Oxidative phosphorylation (WP623)

Homo sapiens

Oxidative phosphorylation is the process in which ATP is formed as a result of the transfer of electrons from NADH or FADH2 to O2 by a series of electron carriers. This process, which takes place in mitochondria, is the major source of ATP in aerobic organisms. [https://www.ncbi.nlm.nih.gov/books/NBK21208/] Proteins on this pathway have targeted assays available via the [https://assays.cancer.gov/available_assays?wp_id=WP623 CPTAC Assay Portal]

Authors

Andra Waagmeester , Martijn Van Iersel , Kristina Hanspers , Alex Pico , Allan Kuchinsky , Zahra Roudbari , Martina Summer-Kutmon , Denise Slenter , Egon Willighagen , Friederike Ehrhart , and Eric Weitz

Activity

last edited

Discuss this pathway

Check for ongoing discussions or start your own.

Cited In

Are you planning to include this pathway in your next publication? See How to Cite and add a link here to your paper once it's online.

Organisms

Homo sapiens

Communities

Serious Request 2024 - MetaKids

Annotations

Pathway Ontology

oxidative phosphorylation pathway

Participants

Label Type Compact URI Comment
NAD Metabolite hmdb:HMDB0000902
NADH Metabolite hmdb:HMDB0001487
ADP Metabolite hmdb:HMDB0001341
ATP Metabolite hmdb:HMDB0000538
Hydrogen Metabolite chebi:15378
NDUFS7 GeneProduct ncbigene:374291
ATP5D GeneProduct ncbigene:513
ATP5G3 GeneProduct ncbigene:518
NDUFA4 GeneProduct ncbigene:4697
NDUFB4 GeneProduct ncbigene:4710
NDUFS5 GeneProduct ncbigene:4725
B22 GeneProduct ncbigene:4715
CI-75Kd GeneProduct ncbigene:4719
B9 GeneProduct ncbigene:4696
ATP5G1 GeneProduct ncbigene:516
B18 GeneProduct ncbigene:4713
NDUFB2 GeneProduct ncbigene:4708
CI-SGDH GeneProduct ncbigene:4707
ATP6 GeneProduct ncbigene:4508
NDUFS6 GeneProduct ncbigene:4726
KFYI GeneProduct ncbigene:4717
NDUFV3 GeneProduct ncbigene:4731
ASHI GeneProduct ncbigene:4714
NDUFA8 GeneProduct ncbigene:4702
FASN2A GeneProduct ncbigene:4706
B13 GeneProduct ncbigene:4698
B17 GeneProduct ncbigene:4712
CI-42KD GeneProduct ncbigene:4705
NDUFA9 GeneProduct ncbigene:4704
ATP5O GeneProduct ncbigene:539
B14.5a GeneProduct ncbigene:4701
ATP5F1 GeneProduct ncbigene:515
B14.5b GeneProduct ncbigene:4718
ATP5L GeneProduct ncbigene:10632
MT-ATP6 GeneProduct ensembl:ENSG00000198899
MT-ATP8 GeneProduct ensembl:ENSG00000198744
AQDQ GeneProduct ncbigene:4724
ND4L GeneProduct ncbigene:4539
NUOMS GeneProduct ncbigene:56901
ATP5G2 GeneProduct ncbigene:517
NDUFB10 GeneProduct ncbigene:4716
GZMB GeneProduct ncbigene:3002
ATP5H GeneProduct ncbigene:10476
NDUFS3 GeneProduct ncbigene:4722
NDUFV2 GeneProduct ncbigene:4729
ND5 GeneProduct ncbigene:4540
ND3 GeneProduct ncbigene:4537
NDUFA2 GeneProduct ncbigene:4695
B15 GeneProduct ncbigene:4710
NDUFS2 GeneProduct ncbigene:4720
NDUFS8 GeneProduct ncbigene:4728
ATP6AP1 GeneProduct ncbigene:537
CI-SGDH GeneProduct ncbigene:4711
ATP5E GeneProduct ncbigene:514
ATP5I GeneProduct ncbigene:521
ATP5B GeneProduct ncbigene:506
ND1 GeneProduct ncbigene:4535
ATP5S GeneProduct ncbigene:27109
ATP5J GeneProduct ncbigene:522
ATP6AP2 GeneProduct ncbigene:10159
ATP5J2 GeneProduct ncbigene:9551
B14 GeneProduct ncbigene:4700
ND6 GeneProduct ncbigene:4541
NDUFA11 GeneProduct ncbigene:126328
ATP5A1 GeneProduct ncbigene:498
CI-51kD GeneProduct ncbigene:4723
ND4 GeneProduct ncbigene:4538
ND2 GeneProduct ncbigene:4536

References

  1. Keilin’s respiratory chain concept and its chemiosmotic consequences. Mitchell P. Science. 1979 Dec 7;206(4423):1148–59. PubMed Europe PMC Scholia
  2. The structure, function and evolution of cytochromes. Mathews FS. Prog Biophys Mol Biol. 1985;45(1):1–56. PubMed Europe PMC Scholia
  3. Chemiosmotic hypothesis of oxidative phosphorylation. Mitchell P, Moyle J. Nature. 1967 Jan 14;213(5072):137–9. PubMed Europe PMC Scholia
  4. Chemi-osmotic theory of oxidative phosphorylation. Tager JM, Veldsema-Currie RD, Slater EC. Nature. 1966 Oct 22;212(5060):376–9. PubMed Europe PMC Scholia
  5. Mitochondrial proton conductance and H+/O ratio are independent of electron transport rate in isolated hepatocytes. Porter RK, Brand MD. Biochem J. 1995 Sep 1;310 ( Pt 2)(Pt 2):379–82. PubMed Europe PMC Scholia
  6. Crucial role of the membrane potential for ATP synthesis by F(1)F(o) ATP synthases. Dimroth P, Kaim G, Matthey U. J Exp Biol. 2000 Jan;203(Pt 1):51–9. PubMed Europe PMC Scholia
  7. Structures and proton-pumping strategies of mitochondrial respiratory enzymes. Schultz BE, Chan SI. Annu Rev Biophys Biomol Struct. 2001;30:23–65. PubMed Europe PMC Scholia
  8. Biochemical functions of coenzyme Q10. Crane FL. J Am Coll Nutr. 2001 Dec;20(6):591–8. PubMed Europe PMC Scholia
  9. The molecular machinery of Keilin’s respiratory chain. Rich PR. Biochem Soc Trans. 2003 Dec;31(Pt 6):1095–105. PubMed Europe PMC Scholia
  10. Disturbances of purine nucleotide metabolism in uremia. Rutkowski B, Swierczynski J, Slominska E, Szolkiewicz M, Smolenski RT, Marlewski M, et al. Semin Nephrol. 2004 Sep;24(5):479–83. PubMed Europe PMC Scholia
  11. Lipid rafts are required in Galpha(i) signaling downstream of the P2Y12 receptor during ADP-mediated platelet activation. Quinton TM, Kim S, Jin J, Kunapuli SP. J Thromb Haemost. 2005 May;3(5):1036–41. PubMed Europe PMC Scholia