Pluripotent stem cell differentiation pathway (WP2848)
Homo sapiens
This pathway provides an overview of the directed differentiation molecules used to induce early and derivative cell lineages from human pluripotent stem cells. This overview differentiates between the three primary germ cell layers (ectoderm-outer layer, endoderm-inner layer, mesoderm-middle layer), which are formed in the earliest state of embryonic development and give rise to different tissue types. The initial version of this pathway is a direct adaptation of the SnapShot "Directed Differentiation of Pluripotent Stem Cells" pathway authored by Luis A. Williams, Brandi N. Davis-Dusenbery, and Kevin C. Eggan, HHMI, Harvard University, Cell 149, May 25, 2012 Elsevier Inc. DOI 10.1016/j.cell.2012.05.015. http://download.cell.com/pdf/PIIS0092867412005946.pdf. This adaptation was generated by Meenakshi Venkatasubramanian and Krithika Ramasamy Subramanian at Cincinnati Children's Hospital in the laboratory of Nathan Salomonis. Proteins on this pathway have targeted assays available via the [https://assays.cancer.gov/available_assays?wp_id=WP2848 CPTAC Assay Portal]
Authors
Nathan Salomonis , Kristina Hanspers , Alex Pico , Egon Willighagen , Zahra Roudbari , Susan Coort , Denise Slenter , Daniela Digles , Friederike Ehrhart , and Eric WeitzActivity
Discuss this pathway
Check for ongoing discussions or start your own.
Cited In
- Adverse outcome pathways as a tool for the design of testing strategies to support the safety assessment of emerging advanced materials at the nanoscale (2020).
- Long Term Culture of the A549 Cancer Cell Line Promotes Multilamellar Body Formation and Differentiation towards an Alveolar Type II Pneumocyte Phenotype (2016).
- Interactive neuroinflammation pathways and transcriptomics-based identification of drugs and chemical compounds for schizophrenia (2023).
- A Data Fusion Pipeline for Generating and Enriching Adverse Outcome Pathway Descriptions.
Are you planning to include this pathway in your next publication? See How to Cite and add a link here to your paper once it's online.
Organisms
Homo sapiensCommunities
Annotations
Disease Ontology
spinal cord disease post-traumatic stress disorderPathway Ontology
growth factor signaling pathway regulatory pathwayCell Type Ontology
oligodendrocyte keratinocyte myoblast neuronal stem cell stem cell astrocyte of the spinal cord spinal cord motor neuronLabel | Type | Compact URI | Comment |
---|---|---|---|
Ascorbic acid | Metabolite | hmdb:HMDB0000044 | |
A-83-01 | Metabolite | pubchem.compound:16218924 | |
Selenium | Metabolite | hmdb:HMDB0001349 | |
RA | Metabolite | hmdb:HMDB0001852 | |
Niacinamide | Metabolite | hmdb:HMDB0001406 | |
SB431542 | Metabolite | pubchem.compound:4521392 | http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?cid=4521392 |
Cyclopamine | Metabolite | pubchem.compound:442972 | |
DAPT | Metabolite | pubchem.compound:5311272 | http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?cid=5311272&loc=ec_rcs |
Beta-Glycerophosphoric acid | Metabolite | hmdb:HMDB0002520 | |
Dexamethasone | Metabolite | hmdb:HMDB0015364 | |
Taurine | Metabolite | hmdb:HMDB0000251 | |
Vitamin A | Metabolite | wikidata:Q424976 | |
Naltrexone | Metabolite | hmdb:HMDB0014842 | |
Retinoic acid | Metabolite | hmdb:HMDB0001852 | |
NT5E | GeneProduct | ensembl:ENSG00000135318 | |
FGF2 | GeneProduct | ensembl:ENSG00000138685 | |
CXCR1 | GeneProduct | ensembl:ENSG00000163464 | |
SHH | GeneProduct | ensembl:ENSG00000164690 | |
BMP4 | GeneProduct | ensembl:ENSG00000125378 | |
TGFB1 | GeneProduct | ncbigene:7040 | |
NOG | GeneProduct | ensembl:ENSG00000183691 | |
KIT | GeneProduct | ensembl:ENSG00000157404 | |
EGF | GeneProduct | ensembl:ENSG00000138798 | |
VEGFA | GeneProduct | ensembl:ENSG00000112715 | |
FGF4 | GeneProduct | ensembl:ENSG00000075388 | |
IGF1 | GeneProduct | ensembl:ENSG00000017427 | |
HGF | GeneProduct | ensembl:ENSG00000019991 | |
NOTCH1 | GeneProduct | ncbigene:4851 | |
WNT3A | GeneProduct | ensembl:ENSG00000154342 | |
NODAL | GeneProduct | ensembl:ENSG00000156574 | |
FGF10 | GeneProduct | ensembl:ENSG00000070193 | |
SCF | GeneProduct | ensembl:ENSG00000049130 | |
TPO | GeneProduct | ensembl:ENSG00000115705 | |
FLT3LG | GeneProduct | ensembl:ENSG00000090554 | |
CSF1 | GeneProduct | ensembl:ENSG00000184371 | |
IL6 | GeneProduct | ensembl:ENSG00000136244 | |
IL3 | GeneProduct | ensembl:ENSG00000164399 | |
EPO | GeneProduct | ensembl:ENSG00000130427 | |
INHBA | GeneProduct | ensembl:ENSG00000122641 | |
PDGFB | GeneProduct | ensembl:ENSG00000100311 | |
IL11 | GeneProduct | ensembl:ENSG00000095752 | |
DKK1 | GeneProduct | ensembl:ENSG00000107984 | |
WNT1 | GeneProduct | ensembl:ENSG00000125084 | |
TGFB3 | GeneProduct | ensembl:ENSG00000119699 | |
NTF4 | GeneProduct | ensembl:ENSG00000225950 | |
FST | GeneProduct | ensembl:ENSG00000134363 | |
GDF5 | GeneProduct | ensembl:ENSG00000125965 | |
INS | GeneProduct | ensembl:ENSG00000254647 | |
TF | GeneProduct | ensembl:ENSG00000091513 | |
CSF1R | GeneProduct | ensembl:ENSG00000182578 | |
TNFSF11 | GeneProduct | ensembl:ENSG00000120659 | |
WNT2B | GeneProduct | ncbigene:7482 | |
WNT5A | GeneProduct | ncbigene:7474 | |
WNT7B | GeneProduct | ncbigene:7477 | |
WNT2 | GeneProduct | ncbigene:7472 | |
IL6R | GeneProduct | ensembl:ENSG00000160712 | |
FGF8 | GeneProduct | ensembl:ENSG00000107831 | |
ALK | GeneProduct | ensembl:ENSG00000171094 | |
LEFTY1 | GeneProduct | ensembl:ENSG00000243709 | |
CNTF | GeneProduct | ensembl:ENSG00000242689 | |
PDGFA | GeneProduct | ensembl:ENSG00000197461 | |
FGF1 | GeneProduct | ensembl:ENSG00000113578 | |
INHBA | GeneProduct | ncbigene:3624 | |
BMP4 | GeneProduct | ncbigene:652 |
References
- Repertoire of microglial and macrophage responses after spinal cord injury. David S, Kroner A. Nat Rev Neurosci. 2011 Jun 15;12(7):388–99. PubMed Europe PMC Scholia
- Interplay between Wnt2 and Wnt2bb controls multiple steps of early foregut-derived organ development. Poulain M, Ober EA. Development. 2011 Aug;138(16):3557–68. PubMed Europe PMC Scholia
- Trisomy 21-associated defects in human primitive hematopoiesis revealed through induced pluripotent stem cells. Chou ST, Byrska-Bishop M, Tober JM, Yao Y, Vandorn D, Opalinska JB, et al. Proc Natl Acad Sci U S A. 2012 Oct 23;109(43):17573–8. PubMed Europe PMC Scholia