TGF-beta receptor signaling (WP560)
Homo sapiens
The Transforming growth factor beta (TGFβ) signaling pathway is involved in many cellular processes in both the adult organism and the developing embryo including cell growth, cell differentiation, apoptosis, cellular homeostasis and other cellular functions. In spite of the wide range of cellular processes that the TGFβ signaling pathway regulates, the process is relatively simple. TGFβ superfamily ligands bind to a type II receptor, which recruits and phosphorylates a type I receptor. The type I receptor then phosphorylates receptor-regulated SMADs (R-SMADs) which can now bind the coSMAD SMAD4. R-SMAD/coSMAD complexes accumulate in the nucleus where they act as transcription factors and participate in the regulation of target gene expression. (source: [http://en.wikipedia.org/wiki/TGF_beta_signaling_pathway WikiPedia]). Proteins on this pathway have targeted assays available via the [https://assays.cancer.gov/available_assays?wp_id=WP560 CPTAC Assay Portal]
Authors
Nurit Gal , Thomas Kelder , Alex Pico , Martijn Van Iersel , Samuel Sklar , Kristina Hanspers , Irene Hemel , Eric Weitz , and Egon WillighagenActivity
Discuss this pathway
Check for ongoing discussions or start your own.
Cited In
- Comprehensive Statistical and Bioinformatics Analysis in the Deciphering of Putative Mechanisms by Which Lipid-Associated GWAS Loci Contribute to Coronary Artery Disease (2022).
- Complex fibroblast response to glucocorticoids may underlie variability of clinical efficacy in the vocal folds (2020).
- Adverse outcome pathways as a tool for the design of testing strategies to support the safety assessment of emerging advanced materials at the nanoscale (2020).
- The DNA methylome of inflammatory bowel disease (IBD) reflects intrinsic and extrinsic factors in intestinal mucosal cells (2020).
- Long Term Culture of the A549 Cancer Cell Line Promotes Multilamellar Body Formation and Differentiation towards an Alveolar Type II Pneumocyte Phenotype (2016).
- A Data Fusion Pipeline for Generating and Enriching Adverse Outcome Pathway Descriptions.
- MicroRNAs as potential biomarkers for doxorubicin-induced cardiotoxicity.
Are you planning to include this pathway in your next publication? See How to Cite and add a link here to your paper once it's online.
Organisms
Homo sapiensCommunities
CPTAC PancCanNetAnnotations
Pathway Ontology
transforming growth factor-beta superfamily mediated signaling pathwayLabel | Type | Compact URI | Comment |
---|---|---|---|
TGFBR3 | GeneProduct | ncbigene:7049 | |
ZFHX1B | GeneProduct | ncbigene:9839 | |
TGFB1 | GeneProduct | ncbigene:7040 | |
SMAD9 | GeneProduct | ncbigene:4093 | |
JAK1 | GeneProduct | ncbigene:3716 | |
MAPK9 | GeneProduct | ncbigene:5601 | |
SMAD1 | GeneProduct | ncbigene:4086 | |
RUNX2 | GeneProduct | ncbigene:860 | |
TGIF | GeneProduct | ncbigene:7050 | |
SKI | GeneProduct | ncbigene:6497 | |
SMAD4 | GeneProduct | ncbigene:4089 | |
BMP4 | GeneProduct | ncbigene:652 | |
TNF | GeneProduct | ncbigene:7124 | |
FST | GeneProduct | ncbigene:10468 | |
FKBP1A | GeneProduct | ncbigene:2280 | |
SPP1 | GeneProduct | ncbigene:6696 | |
WNT1 | GeneProduct | ncbigene:7471 | |
TGFBR2 | GeneProduct | ncbigene:7048 | |
THBS1 | GeneProduct | ncbigene:7057 | there are 5 types of tsp |
LIF | GeneProduct | ncbigene:3976 | |
NOG | GeneProduct | ncbigene:9241 | |
LEF1 | GeneProduct | ncbigene:51176 | |
ENG | GeneProduct | ncbigene:2022 | |
SMAD6 | GeneProduct | ncbigene:4091 | |
SKIL | GeneProduct | ncbigene:6498 | |
ZNF423 | GeneProduct | ncbigene:23090 | |
MAPK3 | GeneProduct | ncbigene:5595 | |
RUNX3 | GeneProduct | ncbigene:864 | |
TGFBR1 | GeneProduct | ncbigene:7046 | |
NFKB1 | GeneProduct | ncbigene:4790 | |
SMAD3 | GeneProduct | ncbigene:4088 | |
BAMBI | GeneProduct | ncbigene:25805 | |
EP300 | GeneProduct | ncbigene:2033 | |
SERPINE1 | GeneProduct | ncbigene:5054 | |
INHBA | GeneProduct | ncbigene:3624 | |
LTBP1 | GeneProduct | ncbigene:4052 | |
SMAD2 | GeneProduct | ncbigene:4087 | |
STAT3 | GeneProduct | ncbigene:6774 | |
MIR302A | GeneProduct | ensembl:ENSG00000207927 | |
ZFYVE9 | GeneProduct | ncbigene:9372 | |
IFNG | GeneProduct | ncbigene:3458 | |
JUN | GeneProduct | ncbigene:3725 | |
SMAD7 | GeneProduct | ncbigene:4092 | |
FOXH1 | GeneProduct | ncbigene:8928 | |
HRAS | GeneProduct | ncbigene:3265 | |
CTNNB1 | GeneProduct | ncbigene:1499 | |
FOS | GeneProduct | ncbigene:2353 | |
TFE3 | GeneProduct | ncbigene:7030 | |
EGF | GeneProduct | ncbigene:1950 | |
STAT1 | GeneProduct | ncbigene:6772 | |
CREBBP | GeneProduct | ncbigene:1387 | |
SMAD5 | GeneProduct | ncbigene:4090 | |
ITGB6 | GeneProduct | ncbigene:3694 | |
LEFTY1 | GeneProduct | ncbigene:10637 | |
LEFTY2 | GeneProduct | ncbigene:7044 |
References
- TGFbeta signaling in growth control, cancer, and heritable disorders. Massagué J, Blain SW, Lo RS. Cell. 2000 Oct 13;103(2):295–309. PubMed Europe PMC Scholia
- How cells read TGF-beta signals. Massagué J. Nat Rev Mol Cell Biol. 2000 Dec;1(3):169–78. PubMed Europe PMC Scholia
- MicroRNAs as regulators of differentiation and cell fate decisions. Ivey KN, Srivastava D. Cell Stem Cell. 2010 Jul 2;7(1):36–41. PubMed Europe PMC Scholia