Biosynthesis and regeneration of tetrahydrobiopterin and catabolism of phenylalanine (WP4156)
Homo sapiens
This pathway shows disorders related to phenylalanine and tetrahydrobiopterin (BH4) metabolism. Disorders resulting from an enzyme defect are highlighted in pink. Pathological metabolites used as specific markers are highlighted in purple. BH4 is a natural cofactor for PAH, tyrosine-3-hydroxylase, tryptophan-5-hydroxylase and nitric oxide synthase (NOS), where the latter two are key enzymes in the biosynthesis of the neurotransmitters dopamine and serotonin. This pathway was inspired by Edition 5, Chapter 20 of the book of Blau (ISBN 9783030677268) (Ed.4 Chapter 1).
Authors
Denise Slenter , Egon Willighagen , Irene Hemel , Daniela Digles , Josien Landman , Friederike Ehrhart , Finterly Hu , and Eric WeitzActivity
Discuss this pathway
Check for ongoing discussions or start your own.
Cited In
Are you planning to include this pathway in your next publication? See How to Cite and add a link here to your paper once it's online.
Organisms
Homo sapiensCommunities
Inherited Metabolic Disorders (IMD) Pathways ONTOX Rare Diseases Serious Request 2024 - MetaKidsAnnotations
Disease Ontology
megaloblastic anemia BH4-deficient hyperphenylalaninemia B aromatic L-amino acid decarboxylase deficiency sepiapterin reductase deficiency BH4-deficient hyperphenylalaninemia A dystonia 5 phenylketonuriaPathway Ontology
phenylketonuria pathway dopa responsive dystonia pathway tetrahydrobiopterin metabolic pathway Segawa syndrome pathway phenylalanine degradation pathwayLabel | Type | Compact URI | Comment |
---|---|---|---|
3-OMD | Metabolite | chebi:82913 | AKA 3-ortho-methyldopa (3-OMD) |
Primapterin | Metabolite | wikidata:Q26261687 | |
q-BH2 | Metabolite | chebi:43120 | Dihydrobiopterin |
BH4 | Metabolite | chebi:30436 | AKA tetrahydropterin, 5,6,7,8-tetrahydrobiopterin |
PTP | Metabolite | chebi:136564 | 6-pyruvoyl tetrahydropterin, 6PPH4 |
References
- Physician’s Guide to the Diagnosis, Treatment, and Follow-Up of Inherited Metabolic Diseases [Internet]. Blau N, Duran M, Gibson KM, Dionisi-Vici C. Springer; 2014. 0 p. Available from: https://books.google.com/books/about/Physician_s_Guide_to_the_Diagnosis_Treat.html?hl=&id=wJRBnwEACAAJ OpenLibrary Worldcat
- Neurochemistry and defects of biogenic amine neurotransmitter metabolism. Hyland K. J Inherit Metab Dis. 1999 Jun;22(4):353–63. PubMed Europe PMC Scholia
- Pediatric neurotransmitter diseases. Pearl PL, Wallis DD, Gibson KM. Curr Neurol Neurosci Rep. 2004 Mar;4(2):147–52. PubMed Europe PMC Scholia
- Sepiapterin reductase deficiency in a 2-year-old girl with incomplete response to treatment during short-term follow-up. Kusmierska K, Jansen EEW, Jakobs C, Szymanska K, Malunowicz E, Meilei D, et al. J Inherit Metab Dis. 2009 Dec;32 Suppl 1:S5-10. PubMed Europe PMC Scholia
- Synthesis and recycling of tetrahydrobiopterin in endothelial function and vascular disease. Crabtree MJ, Channon KM. Nitric Oxide. 2011 Aug 1;25(2):81–8. PubMed Europe PMC Scholia
- Biallelic Mutations in DNAJC12 Cause Hyperphenylalaninemia, Dystonia, and Intellectual Disability. Anikster Y, Haack TB, Vilboux T, Pode-Shakked B, Thöny B, Shen N, et al. Am J Hum Genet. 2017 Feb 2;100(2):257–66. PubMed Europe PMC Scholia
- Inherited Disorders of Neurotransmitters: Classification and Practical Approaches for Diagnosis and Treatment. Brennenstuhl H, Jung-Klawitter S, Assmann B, Opladen T. Neuropediatrics. 2019 Feb;50(1):2–14. PubMed Europe PMC Scholia
- Phenylalanine hydroxylase variants interact with the co-chaperone DNAJC12. Jung-Kc K, Himmelreich N, Prestegård KS, Shi TJS, Scherer T, Ying M, et al. Hum Mutat. 2019 Apr;40(4):483–94. PubMed Europe PMC Scholia
- Redefining differential roles of MAO-A in dopamine degradation and MAO-B in tonic GABA synthesis. Cho HU, Kim S, Sim J, Yang S, An H, Nam MH, et al. Exp Mol Med. 2021 Jul;53(7):1148–58. PubMed Europe PMC Scholia