Omega-3-fatty acids in senescence (WP5432)
Homo sapiens
Omega-3-polyunsaturated fatty acids may help with cellular senescence and other age-related conditions: Cognitive decline, Inflammation, Telomere shortening, DNA damage, and Epigenetic changes. Omega-3s are mainly found in fish and other seafood. However, most people in the world have low levels of EPA and DHA in their blood. Structured forms of omega-3s may have enhanced bioavailability and more powerful effects than simpler forms.
Authors
JuliaUM , Egon Willighagen , Denise Slenter , Nikita Krstevska , Eric Weitz , Kristina Hanspers , and Alex PicoActivity
Discuss this pathway
Check for ongoing discussions or start your own.
Cited In
Are you planning to include this pathway in your next publication? See How to Cite and add a link here to your paper once it's online.
Organisms
Homo sapiensCommunities
Annotations
Pathway Ontology
cellular senescence pathway lipid metabolic pathway fatty acid omega degradation pathwayLabel | Type | Compact URI | Comment |
---|---|---|---|
TxB3 | Metabolite | chebi:84444 | |
15d-PGJ3 | Metabolite | chebi:140223 | |
Tetracosapentanoic acid (24:5,n-3) | Metabolite | hmdb:HMDB0006323 | |
MaR-L2 | Metabolite | chebi:137350 | |
PGE3 | Metabolite | chebi:28031 | |
7S,17S-diHpDHA | Metabolite | chebi:140245 | |
PGJ3 | Metabolite | chebi:140267 | |
Δ12-PGJ3 | Metabolite | chebi:140274 | |
MaR-L1 | Metabolite | chebi:137349 | |
14S-HDHA | Metabolite | chebi:137347 | |
Tetracosahexanoic acid (22:6,n-3) | Metabolite | pubchem.compound:11792612 | |
14R-HDHA | Metabolite | chebi:137346 | |
5S,12S,18R-TriHEPE | Metabolite | chebi:133822 | |
16S,17S-epoxy-DPA | Metabolite | chebi:140224 | |
17R-HpDHA | Metabolite | chebi:138590 | |
RvE3 | Metabolite | chebi:138542 | |
19-hydroxy-RvE1 | Metabolite | chebi:165268 | |
5S,6S-epoxy-18R-HEPE | Metabolite | chebi:132219 | |
RvE2 | Metabolite | chebi:81560 | |
RvD5 | Metabolite | chebi:138645 | |
7S,8-epoxy-17S-HDHA | Metabolite | pubchem.compound:53477500 | |
AT-RvD3 | Metabolite | chebi:138615 | |
RvD4 | Metabolite | chebi:138649 | |
RvD6 | Metabolite | chebi:138643 | |
Docosahexaenoic acid (22:6,w3) | Metabolite | chebi:36005 | |
RvD3 | Metabolite | chebi:138648 | |
PD1(n-3 DPA) | Metabolite | chebi:140265 | |
5S-hydroxyperoxy-18R-HEPE | Metabolite | chebi:81562 | |
5S-hydroxyperoxy-18S-HEPE | Metabolite | chebi:91287 | |
7S,8-epoxy-17R-HDHA | Metabolite | chebi:138613 | |
RvE4 | Metabolite | cas:1025684-60-9 | |
17S-HDHA | Metabolite | chebi:138640 | |
17S-HpDPA | Metabolite | chebi:136118 | |
10,11,dihydro-12-oxo-RvE1 | Metabolite | chebi:165276 | |
18-oxo-RvE1 | Metabolite | chebi:131617 | |
Docosapentaenoic acid (22:5,w3) | Metabolite | chebi:53488 | |
RvE1 | Metabolite | chebi:81559 | |
20-hydroxy-RvE1 | Metabolite | chebi:165269 | |
7S,17S-diHpDPA | Metabolite | chebi:140248 | |
7S-hydroperoxy-17S-HDHA | Metabolite | chebi:138642 | |
15S-HpEPE | Metabolite | chebi:165266 | |
4S,5-epoxy-17R-HDHA | Metabolite | chebi:187528 | |
18R-HpEPE | Metabolite | chebi:138565 | |
5S,6S-epoxy-18S-HEPE | Metabolite | chebi:138490 | |
18S-RvE2 | Metabolite | chebi:137034 | |
17R-HDHA | Metabolite | chebi:91137 | |
17S-HpDHA | Metabolite | chebi:136113 | |
12-oxo-RvE1 | Metabolite | chebi:165264 | |
18S-RvE1 | Metabolite | chebi:137038 | |
Mar1(n-3 DPA) | Metabolite | chebi:140256 | |
4S,5-epoxy-17S-HDHA | Metabolite | chebi:138647 | |
AT-RvD4 | Metabolite | chebi:138616 | |
10,11-dihydro-RvE1 | Metabolite | chebi:165277 | |
14-HpDPA | Metabolite | chebi:136353 | |
4S-hydroperoxy-17S-HDHA | Metabolite | chebi:138641 | |
PGH3 | Metabolite | chebi:134407 | |
Eicosatetraenoic acid (20:4,w3) | Metabolite | chebi:166893 | |
PGF3α | Metabolite | chebi:36075 | |
PGD3 | Metabolite | chebi:34939 | |
Stearidonic acid (18:4,w3) | Metabolite | chebi:32389 | |
TxA3 | Metabolite | chebi:165349 | |
α-Linolenic acid (18:3,w3) | Metabolite | chebi:27432 | IUPAC Name: (9Z,12Z,15Z)-octadeca-9,12,15-trienoic acid |
Eicosapentaenoic acid (20:5,w3) | Metabolite | chebi:28364 | |
PGG3 | Metabolite | chebi:134406 | |
Eicosatrienoic acid (20:3,w3) | Metabolite | pubchem.compound:5312529 | |
14S-HpDHA | Metabolite | chebi:136526 | |
13S,14S-epoxy-maresin | Metabolite | chebi:131958 | (13R)-S-glutathionyl-(14S)-hydroxy-(4Z,7Z,9E,11E,16Z,19Z)-docosahexaenoic acid |
Maresin 1 | Metabolite | chebi:138249 | 7R,14S-dihydroxy-4Z,8E,10E,12Z,16Z,19Z-docosahexaenoic acid |
Maresin 2 | Metabolite | chebi:138248 | (13R,14S)-dihydroxy-(4Z,7Z,9E,11E,16Z,19Z)-docosahexaenoic acid |
MCTR1 | Metabolite | chebi:138202 | (13R)-S-glutathionyl-(14S)-hydroxy-(4Z,7Z,9E,11E,16Z,19Z)-docosahexaenoic acid |
MCTR2 | Metabolite | chebi:138206 | (13R)-S-cysteinylglycinyl-(14S)-hydroxy-(4Z,7Z,9E,11E,16Z,19Z)-docosahexaenoic acid |
MCTR3 | Metabolite | chebi:138209 | (13R)-S-cysteinyl-(14S)-hydroxy-(4Z,7Z,9E,11E,16Z,19Z)-docosahexaenoic acid |
17-oxo-RvD1 | Metabolite | chebi:132800 | |
RvD2 | Metabolite | chebi:81565 | |
AT-RvD2 | Metabolite | chebi:138614 | |
8-oxo-RvD1 | Metabolite | chebi:132797 | |
RvD1 | Metabolite | chebi:81564 | |
AT-RvD1 | Metabolite | chebi:138179 | |
16-oxo-RvD2 | Metabolite | chebi:138281 | |
7-oxo-RvD2 | Metabolite | chebi:138279 | |
RvT2 | Metabolite | chebi:137018 | |
RvT4 | Metabolite | chebi:137020 | |
RvT3 | Metabolite | chebi:137019 | |
RvT1 | Metabolite | chebi:137011 | |
15-F3-IsoP | Metabolite | chebi:157746 | = 8-epi PGF3 |
4-E4-NeuroP | Metabolite | lipidmaps:LMFA04010282 | |
4-F4-NeuroP | Metabolite | lipidmaps:LMFA04010008 | |
4-D4-NeuroP | Metabolite | lipidmaps:LMFA04010154 | |
11-F4-NeuroP | Metabolite | lipidmaps:LMFA04010006 | |
14-F4-NeuroP | Metabolite | lipidmaps:LMFA04010004 | |
7-F4-NeuroP | Metabolite | lipidmaps:LMFA04010007 | |
17-F4-NeuroP | Metabolite | lipidmaps:LMFA04010002 | = 17-F4c-NP |
10-F4-NeuroP | Metabolite | lipidmaps:LMFA04010005 | |
13-F4-NeuroP | Metabolite | lipidmaps:LMFA04010003 | |
20-F4-NeuroP | Metabolite | lipidmaps:LMFA04010001 | |
7-E4-NeuroP | Metabolite | lipidmaps:LMFA04010298 | |
7-D4-NeuroP | Metabolite | lipidmaps:LMFA04010170 | |
10-E4-NeuroP | Metabolite | lipidmaps:LMFA04010314 | |
10-D4-NeuroP | Metabolite | lipidmaps:LMFA04010186 | |
10-H4-NeuroP | Metabolite | chebi:185511 | |
11-E4-NeuroP | Metabolite | lipidmaps:LMFA04010330 | |
11-D4-NeuroP | Metabolite | lipidmaps:LMFA04010202 | |
11-H4-NeuroP | Metabolite | chebi:187424 | |
13-E4-NeuroP | Metabolite | lipidmaps:LMFA04010346 | |
13-D4-NeuroP | Metabolite | lipidmaps:LMFA04010218 | |
14-E4-NeuroP | Metabolite | lipidmaps:LMFA04010362 | |
14-D4-NeuroP | Metabolite | lipidmaps:LMFA04010234 | |
14-H4-NeuroP | Metabolite | hmdb:HMDB0062292 | |
17-D4-NeuroP | Metabolite | lipidmaps:LMFA04010250 | = 17-F4c-NP |
17-E4-NeuroP | Metabolite | lipidmaps:LMFA04010378 | = 17-F4c-NP |
20-D4-NeuroP | Metabolite | lipidmaps:LMFA04010266 | |
20-E4-NeuroP | Metabolite | lipidmaps:LMFA04010394 | |
PD2(n-3 DPA) | Metabolite | lipidmaps:LMFA04000097 | |
Mar3(n-3 DPA) | Metabolite | chebi:140258 | |
RCTR1 | Metabolite | lipidmaps:LMFA04030014 | |
RCTR2 | Metabolite | lipidmaps:LMFA04030015 | |
RCTR3 | Metabolite | lipidmaps:LMFA04030016 | |
PCTR1 | Metabolite | lipidmaps:LMFA04040004 | |
16S,17S-epoxyprotectin | Metabolite | chebi:140225 | |
PD1 | Metabolite | chebi:195348 | |
PCTR2 | Metabolite | lipidmaps:LMFA04040005 | |
PCTR3 | Metabolite | lipidmaps:LMFA04040006 | |
PDX | Metabolite | chebi:138653 | (4Z,7Z,10S,11E,13Z,15E,17S,19Z)-10,17-dihydroxydocosahexaenoic acid |
5(S)-HpEPE | Metabolite | chebi:165271 | |
LTB5 | Metabolite | pubchem.compound:5283125 | |
LTC5 | Metabolite | chebi:172777 | |
LXA5 | Metabolite | cas:110657-98-2 | |
LTD5 | Metabolite | chebi:175815 | |
7S-HpDHA | Metabolite | inchikey:InChIKey=IYPGULUSNSBANC-VPNHEHDPSA-M | |
CYP3A4 | GeneProduct | ensembl:ENSG00000160868 | |
CYP2C8 | GeneProduct | ensembl:ENSG00000138115 | |
CYP2E1 | GeneProduct | ensembl:ENSG00000130649 | |
ALOX15B | GeneProduct | ensembl:ENSG00000179593 | |
CYP2D6 | GeneProduct | ensembl:ENSG00000100197 | |
CYP1A2 | GeneProduct | ensembl:ENSG00000140505 | |
CYP2C9 | GeneProduct | ensembl:ENSG00000138109 | |
Peroxidase | GeneProduct | eccode:1.11.1.x | |
ALOX5 | GeneProduct | ensembl:ENSG00000012779 | |
PTGS2 | GeneProduct | ensembl:ENSG00000073756 | |
FPR2 | GeneProduct | ensembl:ENSG00000171049 | =formyl peptide receptor 2 =ALX |
LTA4H | GeneProduct | ensembl:ENSG00000111144 | |
Cytochrome P450 | GeneProduct | interpro:IPR001128 | |
GPR32 | GeneProduct | ensembl:ENSG00000142511 | =G protein-coupled receptor 32 =RVDR1 |
ELOVL5 | GeneProduct | ensembl:ENSG00000012660 | fatty acid elongase 5 |
TXAS | GeneProduct | ensembl:ENSG00000059377 | |
PGDS | GeneProduct | ensembl:ENSG00000107317 | |
PGES | GeneProduct | ensembl:ENSG00000148344 | |
Phospholipase A2 | GeneProduct | uniprot:P47712 | |
PGIS | GeneProduct | ensembl:ENSG00000124212 | |
FADS2 | GeneProduct | ensembl:ENSG00000134824 | gene=FADS2 Δ6-Desaturase |
FADS1 | GeneProduct | ensembl:ENSG00000149485 | gene=FADS1 Δ5-Desaturase |
PTGS1 | GeneProduct | ensembl:ENSG00000095303 | =Prostaglandin-endoperoxide synthase 1 =cyclooxygenase (COX) |
PTGS2 | GeneProduct | ensembl:ENSG00000073756 | =prostaglandin-endoperoxide synthase 2 =cyclooxygenase (COX) |
ALOX12 | GeneProduct | ensembl:ENSG00000108839 | Enzyme 12LOX |
GGT1 | GeneProduct | ensembl:ENSG00000100031 | gamma-glutamyltransferase 1 |
DPEP1 | GeneProduct | ensembl:ENSG00000015413 | dipeptidase 1 |
PTGS2 | GeneProduct | ensembl:ENSG00000073756 | acetylated COX2 or aspirine-treated COX2 |
HPGD | GeneProduct | ensembl:ENSG00000164120 | |
ELOVL2 | GeneProduct | ensembl:ENSG00000197977 | |
FADS2 | GeneProduct | ensembl:ENSG00000134824 | |
ALOX15 | GeneProduct | ensembl:ENSG00000161905 | |
GSTM4 | GeneProduct | ensembl:ENSG00000168765 | glutathione S-transferase mu 4 |
LTC4S | GeneProduct | ensembl:ENSG00000213316 | |
EPHX2 | GeneProduct | ensembl:ENSG00000120915 | |
GST | GeneProduct | ensembl:ENSG00000084207 |
References
- Eicosanoid nomenclature. Smith W. Prostaglandins. 1989 Jul;38(1):125–33. PubMed Europe PMC Scholia
- Evidence for the formation of F3-isoprostanes during peroxidation of eicosapentaenoic acid. Nourooz-Zadeh J, Halliwell B, Anggård EE. Biochem Biophys Res Commun. 1997 Jul 18;236(2):467–72. PubMed Europe PMC Scholia
- Formation of novel D-ring and E-ring isoprostane-like compounds (D4/E4-neuroprostanes) in vivo from docosahexaenoic acid. Reich EE, Zackert WE, Brame CJ, Chen Y, Roberts LJ 2nd, Hachey DL, et al. Biochemistry. 2000 Mar 7;39(9):2376–83. PubMed Europe PMC Scholia
- Brain regional quantification of F-ring and D-/E-ring isoprostanes and neuroprostanes in Alzheimer’s disease. Reich EE, Markesbery WR, Roberts LJ 2nd, Swift LL, Morrow JD, Montine TJ. Am J Pathol. 2001 Jan;158(1):293–7. PubMed Europe PMC Scholia
- Polyunsaturated fatty acid synthesis: what will they think of next? Wallis JG, Watts JL, Browse J. Trends Biochem Sci. 2002 Sep;27(9):467. PubMed Europe PMC Scholia
- Quantification of F-ring isoprostane-like compounds (F4-neuroprostanes) derived from docosahexaenoic acid in vivo in humans by a stable isotope dilution mass spectrometric assay. Musiek ES, Cha JK, Yin H, Zackert WE, Terry ES, Porter NA, et al. J Chromatogr B Analyt Technol Biomed Life Sci. 2004 Jan 5;799(1):95–102. PubMed Europe PMC Scholia
- Cyclooxygenases, peroxide tone and the allure of fish oil. Smith WL. Curr Opin Cell Biol. 2005 Apr;17(2):174–82. PubMed Europe PMC Scholia
- Regiochemistry of neuroprostanes generated from the peroxidation of docosahexaenoic acid in vitro and in vivo. Yin H, Musiek ES, Gao L, Porter NA, Morrow JD. J Biol Chem. 2005 Jul 15;280(28):26600–11. PubMed Europe PMC Scholia
- Formation of F-ring isoprostane-like compounds (F3-isoprostanes) in vivo from eicosapentaenoic acid. Gao L, Yin H, Milne GL, Porter NA, Morrow JD. J Biol Chem. 2006 May 19;281(20):14092–9. PubMed Europe PMC Scholia
- Resolvin E2: identification and anti-inflammatory actions: pivotal role of human 5-lipoxygenase in resolvin E series biosynthesis. Tjonahen E, Oh SF, Siegelman J, Elangovan S, Percarpio KB, Hong S, et al. Chem Biol. 2006 Nov;13(11):1193–202. PubMed Europe PMC Scholia
- Resolvins and protectins: mediating solutions to inflammation. Kohli P, Levy BD. Br J Pharmacol. 2009 Oct;158(4):960–71. PubMed Europe PMC Scholia
- Rapid expression of transgenes driven by seed-specific constructs in leaf tissue: DHA production. Petrie JR, Shrestha P, Liu Q, Mansour MP, Wood CC, Zhou XR, et al. Plant Methods. 2010 Mar 11;6:8. PubMed Europe PMC Scholia
- Pro-resolving actions and stereoselective biosynthesis of 18S E-series resolvins in human leukocytes and murine inflammation. Oh SF, Pillai PS, Recchiuti A, Yang R, Serhan CN. J Clin Invest. 2011 Feb;121(2):569–81. PubMed Europe PMC Scholia
- Resolvins and protectins in inflammation resolution. Serhan CN, Petasis NA. Chem Rev. 2011 Oct 12;111(10):5922–43. PubMed Europe PMC Scholia
- The eicosapentaenoic acid metabolite 15-deoxy-δ(12,14)-prostaglandin J3 increases adiponectin secretion by adipocytes partly via a PPARγ-dependent mechanism. Lefils-Lacourtablaise J, Socorro M, Géloën A, Daira P, Debard C, Loizon E, et al. PLoS One. 2013 May 29;8(5):e63997. PubMed Europe PMC Scholia
- Novel n-3 immunoresolvents: structures and actions. Dalli J, Colas RA, Serhan CN. Sci Rep. 2013;3:1940. PubMed Europe PMC Scholia
- Prostaglandin E3 metabolism and cancer. Yang P, Jiang Y, Fischer SM. Cancer Lett. 2014 Jun 28;348(1–2):1–11. PubMed Europe PMC Scholia
- Maresin biosynthesis and identification of maresin 2, a new anti-inflammatory and pro-resolving mediator from human macrophages. Deng B, Wang CW, Arnardottir HH, Li Y, Cheng CYC, Dalli J, et al. PLoS One. 2014 Jul 18;9(7):e102362. PubMed Europe PMC Scholia
- Protectins and maresins: New pro-resolving families of mediators in acute inflammation and resolution bioactive metabolome. Serhan CN, Dalli J, Colas RA, Winkler JW, Chiang N. Biochim Biophys Acta. 2015 Apr;1851(4):397–413. PubMed Europe PMC Scholia
- Maresin-like lipid mediators are produced by leukocytes and platelets and rescue reparative function of diabetes-impaired macrophages. Hong S, Lu Y, Tian H, Alapure BV, Wang Q, Bunnell BA, et al. Chem Biol. 2014 Oct 23;21(10):1318–29. PubMed Europe PMC Scholia
- Novel proresolving and tissue-regenerative resolvin and protectin sulfido-conjugated pathways. Dalli J, Ramon S, Norris PC, Colas RA, Serhan CN. FASEB J. 2015 May;29(5):2120–36. PubMed Europe PMC Scholia
- Advances in Our Understanding of Oxylipins Derived from Dietary PUFAs. Gabbs M, Leng S, Devassy JG, Monirujjaman M, Aukema HM. Adv Nutr. 2015 Sep 15;6(5):513–40. PubMed Europe PMC Scholia
- PUFAs: Structures, Metabolism and Functions. Wiktorowska-Owczarek A, Berezińska M, Nowak JZ. Adv Clin Exp Med. 2015;24(6):931–41. PubMed Europe PMC Scholia
- Synthesis of 13(R)-Hydroxy-7Z,10Z,13R,14E,16Z,19Z Docosapentaenoic Acid (13R-HDPA) and Its Biosynthetic Conversion to the 13-Series Resolvins. Primdahl KG, Aursnes M, Walker ME, Colas RA, Serhan CN, Dalli J, et al. J Nat Prod. 2016 Oct 28;79(10):2693–702. PubMed Europe PMC Scholia
- Maresin conjugates in tissue regeneration biosynthesis enzymes in human macrophages. Dalli J, Vlasakov I, Riley IR, Rodriguez AR, Spur BW, Petasis NA, et al. Proc Natl Acad Sci U S A. 2016 Oct 25;113(43):12232–7. PubMed Europe PMC Scholia
- The novel lipid mediator PD1n-3 DPA: An overview of the structural elucidation, synthesis, biosynthesis and bioactions. Hansen TV, Dalli J, Serhan CN. Prostaglandins Other Lipid Mediat. 2017 Nov;133:103–10. PubMed Europe PMC Scholia
- Isoprostanes, neuroprostanes and phytoprostanes: An overview of 25years of research in chemistry and biology. Galano JM, Lee YY, Oger C, Vigor C, Vercauteren J, Durand T, et al. Prog Lipid Res. 2017 Oct;68:83–108. PubMed Europe PMC Scholia
- Effect of the dietary intake of melatonin- and hydroxytyrosol-rich wines by healthy female volunteers on the systemic lipidomic-related oxylipins. Marhuenda J, Medina S, Martínez-Hernández P, Arina S, Zafrilla P, Mulero J, et al. Food Funct. 2017 Oct 18;8(10):3745–57. PubMed Europe PMC Scholia
- Hallmarks of Cellular Senescence. Hernandez-Segura A, Nehme J, Demaria M. Trends Cell Biol. 2018 Jun;28(6):436–53. PubMed Europe PMC Scholia
- Maresins: Specialized Proresolving Lipid Mediators and Their Potential Role in Inflammatory-Related Diseases. Tang S, Wan M, Huang W, Stanton RC, Xu Y. Mediators Inflamm. 2018 Feb 20;2018:2380319. PubMed Europe PMC Scholia
- Omega-3 and omega-6 polyunsaturated fatty acids: Dietary sources, metabolism, and significance - A review. Saini RK, Keum YS. Life Sci. 2018 Jun 15;203:255–67. PubMed Europe PMC Scholia
- Resolvins in inflammation: emergence of the pro-resolving superfamily of mediators. Serhan CN, Levy BD. J Clin Invest. 2018 Jul 2;128(7):2657–69. PubMed Europe PMC Scholia
- Non-Targeted LC-MS/MS Assay for Screening Over 100 Lipid Mediators from ARA, EPA, and DHA in Biological Samples Based on Mass Spectral Fragmentations. Dasilva G, Muñoz S, Lois S, Medina I. Molecules. 2019 Jun 19;24(12):2276. PubMed Europe PMC Scholia
- Liquid chromatography-coupled mass spectrometry analysis of glutathione conjugates of oxygenated polyunsaturated fatty acids. Liening S, Romp E, Werz O, Scriba GKE, Garscha U. Prostaglandins Other Lipid Mediat. 2019 Oct;144:106350. PubMed Europe PMC Scholia
- FADS1 and FADS2 Polymorphisms Modulate Fatty Acid Metabolism and Dietary Impact on Health. Koletzko B, Reischl E, Tanjung C, Gonzalez-Casanova I, Ramakrishnan U, Meldrum S, et al. Annu Rev Nutr. 2019 Aug 21;39:21–44. PubMed Europe PMC Scholia
- Secretion of leukotrienes by senescent lung fibroblasts promotes pulmonary fibrosis. Wiley CD, Brumwell AN, Davis SS, Jackson JR, Valdovinos A, Calhoun C, et al. JCI Insight. 2019 Dec 19;4(24):e130056. PubMed Europe PMC Scholia
- First total syntheses of the pro-resolving lipid mediators 7(S),13(R),20(S)-Resolvin T1 and 7(S),13(R)-Resolvin T4. Rodriguez AR, Spur BW. Tetrahedron Lett. 2020 Feb 6;61(6):151473. PubMed Europe PMC Scholia
- 15-Lipoxygenase-1 biosynthesis of 7S,14S-diHDHA implicates 15-lipoxygenase-2 in biosynthesis of resolvin D5. Perry SC, Kalyanaraman C, Tourdot BE, Conrad WS, Akinkugbe O, Freedman JC, et al. J Lipid Res. 2020 Jul;61(7):1087–103. PubMed Europe PMC Scholia
- Maresins: anti-inflammatory pro-resolving mediators with therapeutic potential. Li QF, Hao H, Tu WS, Guo N, Zhou XY. Eur Rev Med Pharmacol Sci. 2020 Jul;24(13):7442–53. PubMed Europe PMC Scholia
- Specialized pro-resolving mediator network: an update on production and actions. Chiang N, Serhan CN. Essays Biochem. 2020 Sep 23;64(3):443–62. PubMed Europe PMC Scholia
- Effect of Prostanoids on Human Platelet Function: An Overview. Braune S, Küpper JH, Jung F. Int J Mol Sci. 2020 Nov 27;21(23):9020. PubMed Europe PMC Scholia
- Stereoselective Synthesis and Structural Confirmation of the Specialized Pro-Resolving Mediator Resolvin E4. Reinertsen AF, Primdahl KG, Shay AE, Serhan CN, Hansen TV, Aursnes M. J Org Chem. 2021 Feb 19;86(4):3535–45. PubMed Europe PMC Scholia
- A New E-Series Resolvin: RvE4 Stereochemistry and Function in Efferocytosis of Inflammation-Resolution. Libreros S, Shay AE, Nshimiyimana R, Fichtner D, Martin MJ, Wourms N, et al. Front Immunol. 2021 Feb 10;11:631319. PubMed Europe PMC Scholia
- Oxylipin biosynthesis reinforces cellular senescence and allows detection of senolysis. Wiley CD, Sharma R, Davis SS, Lopez-Dominguez JA, Mitchell KP, Wiley S, et al. Cell Metab. 2021 Jun 1;33(6):1124-1136.e5. PubMed Europe PMC Scholia
- Beneficial Outcomes of Omega-6 and Omega-3 Polyunsaturated Fatty Acids on Human Health: An Update for 2021. Djuricic I, Calder PC. Nutrients. 2021 Jul 15;13(7):2421. PubMed Europe PMC Scholia
- Specialized pro-resolving mediators: biosynthesis and biological role in bacterial infections. Jordan PM, Werz O. FEBS J. 2022 Jul;289(14):4212–27. PubMed Europe PMC Scholia
- New understandings of the pathway of long-chain polyunsaturated fatty acid biosynthesis. Brenna JT, Kothapalli KSD. Curr Opin Clin Nutr Metab Care. 2022 Mar 1;25(2):60–6. PubMed Europe PMC Scholia
- On the biosynthesis of specialized pro-resolving mediators in human neutrophils and the influence of cell integrity. Mainka M, George S, Angioni C, Ebert R, Goebel T, Kampschulte N, et al. Biochim Biophys Acta Mol Cell Biol Lipids. 2022 Mar;1867(3):159093. PubMed Europe PMC Scholia
- E-series resolvin metabolome, biosynthesis and critical role of stereochemistry of specialized pro-resolving mediators (SPMs) in inflammation-resolution: Preparing SPMs for long COVID-19, human clinical trials, and targeted precision nutrition. Serhan CN, Libreros S, Nshimiyimana R. Semin Immunol. 2022 Jan;59:101597. PubMed Europe PMC Scholia
- Resolvins, Protectins, and Maresins: DHA-Derived Specialized Pro-Resolving Mediators, Biosynthetic Pathways, Synthetic Approaches, and Their Role in Inflammation. Ferreira I, Falcato F, Bandarra N, Rauter AP. Molecules. 2022 Mar 3;27(5):1677. PubMed Europe PMC Scholia
- Key Enzymes in Fatty Acid Synthesis Pathway for Bioactive Lipids Biosynthesis. Zhuang XY, Zhang YH, Xiao AF, Zhang AH, Fang BS. Front Nutr. 2022 Feb 23;9:851402. PubMed Europe PMC Scholia
- The role of Resolvin D1 in liver diseases. Yang M, Song XQ, Han M, Liu H. Prostaglandins Other Lipid Mediat. 2022 Jun;160:106634. PubMed Europe PMC Scholia
- Polyunsaturated fatty acids and fatty acid-derived lipid mediators: Recent advances in the understanding of their biosynthesis, structures, and functions. Dyall SC, Balas L, Bazan NG, Brenna JT, Chiang N, da Costa Souza F, et al. Prog Lipid Res. 2022 Apr;86:101165. PubMed Europe PMC Scholia
- Protective Potential of Maresins in Cardiovascular Diseases. Liu M, He H, Chen L. Front Cardiovasc Med. 2022 Jul 4;9:923413. PubMed Europe PMC Scholia
- Protectins: Their biosynthesis, metabolism and structure-functions. Vidar Hansen T, Serhan CN. Biochem Pharmacol. 2022 Dec;206:115330. PubMed Europe PMC Scholia
- Formation of lipoxins and resolvins in human leukocytes. Kahnt AS, Schebb NH, Steinhilber D. Prostaglandins Other Lipid Mediat. 2023 Jun;166:106726. PubMed Europe PMC Scholia
- The biosynthetic pathways of the protectins. Stenvik Haatveit Å, Hansen TV. Prostaglandins Other Lipid Mediat. 2023 Dec;169:106787. PubMed Europe PMC Scholia