Omega-3-fatty acids in senescence (WP5432)

Homo sapiens

Omega-3-polyunsaturated fatty acids may help with cellular senescence and other age-related conditions: Cognitive decline, Inflammation, Telomere shortening, DNA damage, and Epigenetic changes. Omega-3s are mainly found in fish and other seafood. However, most people in the world have low levels of EPA and DHA in their blood. Structured forms of omega-3s may have enhanced bioavailability and more powerful effects than simpler forms.

Authors

JuliaUM , Egon Willighagen , Denise Slenter , Nikita Krstevska , Eric Weitz , Kristina Hanspers , and Alex Pico

Activity

last edited

Discuss this pathway

Check for ongoing discussions or start your own.

Cited In

Are you planning to include this pathway in your next publication? See How to Cite and add a link here to your paper once it's online.

Organisms

Homo sapiens

Communities

Annotations

Pathway Ontology

cellular senescence pathway lipid metabolic pathway fatty acid omega degradation pathway

Participants

Label Type Compact URI Comment
TxB3 Metabolite chebi:84444
15d-PGJ3 Metabolite chebi:140223
Tetracosapentanoic acid (24:5,n-3) Metabolite hmdb:HMDB0006323
MaR-L2 Metabolite chebi:137350
PGE3 Metabolite chebi:28031
7S,17S-diHpDHA Metabolite chebi:140245
PGJ3 Metabolite chebi:140267
Δ12-PGJ3 Metabolite chebi:140274
MaR-L1 Metabolite chebi:137349
14S-HDHA Metabolite chebi:137347
Tetracosahexanoic acid (22:6,n-3) Metabolite pubchem.compound:11792612
14R-HDHA Metabolite chebi:137346
5S,12S,18R-TriHEPE Metabolite chebi:133822
16S,17S-epoxy-DPA Metabolite chebi:140224
17R-HpDHA Metabolite chebi:138590
RvE3 Metabolite chebi:138542
19-hydroxy-RvE1 Metabolite chebi:165268
5S,6S-epoxy-18R-HEPE Metabolite chebi:132219
RvE2 Metabolite chebi:81560
RvD5 Metabolite chebi:138645
7S,8-epoxy-17S-HDHA Metabolite pubchem.compound:53477500
AT-RvD3 Metabolite chebi:138615
RvD4 Metabolite chebi:138649
RvD6 Metabolite chebi:138643
Docosahexaenoic acid (22:6,w3) Metabolite chebi:36005
RvD3 Metabolite chebi:138648
PD1(n-3 DPA) Metabolite chebi:140265
5S-hydroxyperoxy-18R-HEPE Metabolite chebi:81562
5S-hydroxyperoxy-18S-HEPE Metabolite chebi:91287
7S,8-epoxy-17R-HDHA Metabolite chebi:138613
RvE4 Metabolite cas:1025684-60-9
17S-HDHA Metabolite chebi:138640
17S-HpDPA Metabolite chebi:136118
10,11,dihydro-12-oxo-RvE1 Metabolite chebi:165276
18-oxo-RvE1 Metabolite chebi:131617
Docosapentaenoic acid (22:5,w3) Metabolite chebi:53488
RvE1 Metabolite chebi:81559
20-hydroxy-RvE1 Metabolite chebi:165269
7S,17S-diHpDPA Metabolite chebi:140248
7S-hydroperoxy-17S-HDHA Metabolite chebi:138642
15S-HpEPE Metabolite chebi:165266
4S,5-epoxy-17R-HDHA Metabolite chebi:187528
18R-HpEPE Metabolite chebi:138565
5S,6S-epoxy-18S-HEPE Metabolite chebi:138490
18S-RvE2 Metabolite chebi:137034
17R-HDHA Metabolite chebi:91137
17S-HpDHA Metabolite chebi:136113
12-oxo-RvE1 Metabolite chebi:165264
18S-RvE1 Metabolite chebi:137038
Mar1(n-3 DPA) Metabolite chebi:140256
4S,5-epoxy-17S-HDHA Metabolite chebi:138647
AT-RvD4 Metabolite chebi:138616
10,11-dihydro-RvE1 Metabolite chebi:165277
14-HpDPA Metabolite chebi:136353
4S-hydroperoxy-17S-HDHA Metabolite chebi:138641
PGH3 Metabolite chebi:134407
Eicosatetraenoic acid (20:4,w3) Metabolite chebi:166893
PGF3α Metabolite chebi:36075
PGD3 Metabolite chebi:34939
Stearidonic acid (18:4,w3) Metabolite chebi:32389
TxA3 Metabolite chebi:165349
α-Linolenic acid (18:3,w3) Metabolite chebi:27432 IUPAC Name: (9Z,12Z,15Z)-octadeca-9,12,15-trienoic acid
Eicosapentaenoic acid (20:5,w3) Metabolite chebi:28364
PGG3 Metabolite chebi:134406
Eicosatrienoic acid (20:3,w3) Metabolite pubchem.compound:5312529
14S-HpDHA Metabolite chebi:136526
13S,14S-epoxy-maresin Metabolite chebi:131958 (13R)-S-glutathionyl-(14S)-hydroxy-(4Z,7Z,9E,11E,16Z,19Z)-docosahexaenoic acid
Maresin 1 Metabolite chebi:138249 7R,14S-dihydroxy-4Z,8E,10E,12Z,16Z,19Z-docosahexaenoic acid
Maresin 2 Metabolite chebi:138248 (13R,14S)-dihydroxy-(4Z,7Z,9E,11E,16Z,19Z)-docosahexaenoic acid
MCTR1 Metabolite chebi:138202 (13R)-S-glutathionyl-(14S)-hydroxy-(4Z,7Z,9E,11E,16Z,19Z)-docosahexaenoic acid
MCTR2 Metabolite chebi:138206 (13R)-S-cysteinylglycinyl-(14S)-hydroxy-(4Z,7Z,9E,11E,16Z,19Z)-docosahexaenoic acid
MCTR3 Metabolite chebi:138209 (13R)-S-cysteinyl-(14S)-hydroxy-(4Z,7Z,9E,11E,16Z,19Z)-docosahexaenoic acid
17-oxo-RvD1 Metabolite chebi:132800
RvD2 Metabolite chebi:81565
AT-RvD2 Metabolite chebi:138614
8-oxo-RvD1 Metabolite chebi:132797
RvD1 Metabolite chebi:81564
AT-RvD1 Metabolite chebi:138179
16-oxo-RvD2 Metabolite chebi:138281
7-oxo-RvD2 Metabolite chebi:138279
RvT2 Metabolite chebi:137018
RvT4 Metabolite chebi:137020
RvT3 Metabolite chebi:137019
RvT1 Metabolite chebi:137011
15-F3-IsoP Metabolite chebi:157746 = 8-epi PGF3
4-E4-NeuroP Metabolite lipidmaps:LMFA04010282
4-F4-NeuroP Metabolite lipidmaps:LMFA04010008
4-D4-NeuroP Metabolite lipidmaps:LMFA04010154
11-F4-NeuroP Metabolite lipidmaps:LMFA04010006
14-F4-NeuroP Metabolite lipidmaps:LMFA04010004
7-F4-NeuroP Metabolite lipidmaps:LMFA04010007
17-F4-NeuroP Metabolite lipidmaps:LMFA04010002 = 17-F4c-NP
10-F4-NeuroP Metabolite lipidmaps:LMFA04010005
13-F4-NeuroP Metabolite lipidmaps:LMFA04010003
20-F4-NeuroP Metabolite lipidmaps:LMFA04010001
7-E4-NeuroP Metabolite lipidmaps:LMFA04010298
7-D4-NeuroP Metabolite lipidmaps:LMFA04010170
10-E4-NeuroP Metabolite lipidmaps:LMFA04010314
10-D4-NeuroP Metabolite lipidmaps:LMFA04010186
10-H4-NeuroP Metabolite chebi:185511
11-E4-NeuroP Metabolite lipidmaps:LMFA04010330
11-D4-NeuroP Metabolite lipidmaps:LMFA04010202
11-H4-NeuroP Metabolite chebi:187424
13-E4-NeuroP Metabolite lipidmaps:LMFA04010346
13-D4-NeuroP Metabolite lipidmaps:LMFA04010218
14-E4-NeuroP Metabolite lipidmaps:LMFA04010362
14-D4-NeuroP Metabolite lipidmaps:LMFA04010234
14-H4-NeuroP Metabolite hmdb:HMDB0062292
17-D4-NeuroP Metabolite lipidmaps:LMFA04010250 = 17-F4c-NP
17-E4-NeuroP Metabolite lipidmaps:LMFA04010378 = 17-F4c-NP
20-D4-NeuroP Metabolite lipidmaps:LMFA04010266
20-E4-NeuroP Metabolite lipidmaps:LMFA04010394
PD2(n-3 DPA) Metabolite lipidmaps:LMFA04000097
Mar3(n-3 DPA) Metabolite chebi:140258
RCTR1 Metabolite lipidmaps:LMFA04030014
RCTR2 Metabolite lipidmaps:LMFA04030015
RCTR3 Metabolite lipidmaps:LMFA04030016
PCTR1 Metabolite lipidmaps:LMFA04040004
16S,17S-epoxyprotectin Metabolite chebi:140225
PD1 Metabolite chebi:195348
PCTR2 Metabolite lipidmaps:LMFA04040005
PCTR3 Metabolite lipidmaps:LMFA04040006
PDX Metabolite chebi:138653 (4Z,7Z,10S,11E,13Z,15E,17S,19Z)-10,17-dihydroxydocosahexaenoic acid
5(S)-HpEPE Metabolite chebi:165271
LTB5 Metabolite pubchem.compound:5283125
LTC5 Metabolite chebi:172777
LXA5 Metabolite cas:110657-98-2
LTD5 Metabolite chebi:175815
7S-HpDHA Metabolite inchikey:InChIKey=IYPGULUSNSBANC-VPNHEHDPSA-M
CYP3A4 GeneProduct ensembl:ENSG00000160868
CYP2C8 GeneProduct ensembl:ENSG00000138115
CYP2E1 GeneProduct ensembl:ENSG00000130649
ALOX15B GeneProduct ensembl:ENSG00000179593
CYP2D6 GeneProduct ensembl:ENSG00000100197
CYP1A2 GeneProduct ensembl:ENSG00000140505
CYP2C9 GeneProduct ensembl:ENSG00000138109
Peroxidase GeneProduct eccode:1.11.1.x
ALOX5 GeneProduct ensembl:ENSG00000012779
PTGS2 GeneProduct ensembl:ENSG00000073756
FPR2 GeneProduct ensembl:ENSG00000171049 =formyl peptide receptor 2 =ALX
LTA4H GeneProduct ensembl:ENSG00000111144
Cytochrome P450 GeneProduct interpro:IPR001128
GPR32 GeneProduct ensembl:ENSG00000142511 =G protein-coupled receptor 32 =RVDR1
ELOVL5 GeneProduct ensembl:ENSG00000012660 fatty acid elongase 5
TXAS GeneProduct ensembl:ENSG00000059377
PGDS GeneProduct ensembl:ENSG00000107317
PGES GeneProduct ensembl:ENSG00000148344
Phospholipase A2 GeneProduct uniprot:P47712
PGIS GeneProduct ensembl:ENSG00000124212
FADS2 GeneProduct ensembl:ENSG00000134824 gene=FADS2 Δ6-Desaturase
FADS1 GeneProduct ensembl:ENSG00000149485 gene=FADS1 Δ5-Desaturase
PTGS1 GeneProduct ensembl:ENSG00000095303 =Prostaglandin-endoperoxide synthase 1 =cyclooxygenase (COX)
PTGS2 GeneProduct ensembl:ENSG00000073756 =prostaglandin-endoperoxide synthase 2 =cyclooxygenase (COX)
ALOX12 GeneProduct ensembl:ENSG00000108839 Enzyme 12LOX
GGT1 GeneProduct ensembl:ENSG00000100031 gamma-glutamyltransferase 1
DPEP1 GeneProduct ensembl:ENSG00000015413 dipeptidase 1
PTGS2 GeneProduct ensembl:ENSG00000073756 acetylated COX2 or aspirine-treated COX2
HPGD GeneProduct ensembl:ENSG00000164120
ELOVL2 GeneProduct ensembl:ENSG00000197977
FADS2 GeneProduct ensembl:ENSG00000134824
ALOX15 GeneProduct ensembl:ENSG00000161905
GSTM4 GeneProduct ensembl:ENSG00000168765 glutathione S-transferase mu 4
LTC4S GeneProduct ensembl:ENSG00000213316
EPHX2 GeneProduct ensembl:ENSG00000120915
GST GeneProduct ensembl:ENSG00000084207

References

  1. Eicosanoid nomenclature. Smith W. Prostaglandins. 1989 Jul;38(1):125–33. PubMed Europe PMC Scholia
  2. Evidence for the formation of F3-isoprostanes during peroxidation of eicosapentaenoic acid. Nourooz-Zadeh J, Halliwell B, Anggård EE. Biochem Biophys Res Commun. 1997 Jul 18;236(2):467–72. PubMed Europe PMC Scholia
  3. Formation of novel D-ring and E-ring isoprostane-like compounds (D4/E4-neuroprostanes) in vivo from docosahexaenoic acid. Reich EE, Zackert WE, Brame CJ, Chen Y, Roberts LJ 2nd, Hachey DL, et al. Biochemistry. 2000 Mar 7;39(9):2376–83. PubMed Europe PMC Scholia
  4. Brain regional quantification of F-ring and D-/E-ring isoprostanes and neuroprostanes in Alzheimer’s disease. Reich EE, Markesbery WR, Roberts LJ 2nd, Swift LL, Morrow JD, Montine TJ. Am J Pathol. 2001 Jan;158(1):293–7. PubMed Europe PMC Scholia
  5. Polyunsaturated fatty acid synthesis: what will they think of next? Wallis JG, Watts JL, Browse J. Trends Biochem Sci. 2002 Sep;27(9):467. PubMed Europe PMC Scholia
  6. Quantification of F-ring isoprostane-like compounds (F4-neuroprostanes) derived from docosahexaenoic acid in vivo in humans by a stable isotope dilution mass spectrometric assay. Musiek ES, Cha JK, Yin H, Zackert WE, Terry ES, Porter NA, et al. J Chromatogr B Analyt Technol Biomed Life Sci. 2004 Jan 5;799(1):95–102. PubMed Europe PMC Scholia
  7. Cyclooxygenases, peroxide tone and the allure of fish oil. Smith WL. Curr Opin Cell Biol. 2005 Apr;17(2):174–82. PubMed Europe PMC Scholia
  8. Regiochemistry of neuroprostanes generated from the peroxidation of docosahexaenoic acid in vitro and in vivo. Yin H, Musiek ES, Gao L, Porter NA, Morrow JD. J Biol Chem. 2005 Jul 15;280(28):26600–11. PubMed Europe PMC Scholia
  9. Formation of F-ring isoprostane-like compounds (F3-isoprostanes) in vivo from eicosapentaenoic acid. Gao L, Yin H, Milne GL, Porter NA, Morrow JD. J Biol Chem. 2006 May 19;281(20):14092–9. PubMed Europe PMC Scholia
  10. Resolvin E2: identification and anti-inflammatory actions: pivotal role of human 5-lipoxygenase in resolvin E series biosynthesis. Tjonahen E, Oh SF, Siegelman J, Elangovan S, Percarpio KB, Hong S, et al. Chem Biol. 2006 Nov;13(11):1193–202. PubMed Europe PMC Scholia
  11. Resolvins and protectins: mediating solutions to inflammation. Kohli P, Levy BD. Br J Pharmacol. 2009 Oct;158(4):960–71. PubMed Europe PMC Scholia
  12. Rapid expression of transgenes driven by seed-specific constructs in leaf tissue: DHA production. Petrie JR, Shrestha P, Liu Q, Mansour MP, Wood CC, Zhou XR, et al. Plant Methods. 2010 Mar 11;6:8. PubMed Europe PMC Scholia
  13. Pro-resolving actions and stereoselective biosynthesis of 18S E-series resolvins in human leukocytes and murine inflammation. Oh SF, Pillai PS, Recchiuti A, Yang R, Serhan CN. J Clin Invest. 2011 Feb;121(2):569–81. PubMed Europe PMC Scholia
  14. Resolvins and protectins in inflammation resolution. Serhan CN, Petasis NA. Chem Rev. 2011 Oct 12;111(10):5922–43. PubMed Europe PMC Scholia
  15. The eicosapentaenoic acid metabolite 15-deoxy-δ(12,14)-prostaglandin J3 increases adiponectin secretion by adipocytes partly via a PPARγ-dependent mechanism. Lefils-Lacourtablaise J, Socorro M, Géloën A, Daira P, Debard C, Loizon E, et al. PLoS One. 2013 May 29;8(5):e63997. PubMed Europe PMC Scholia
  16. Novel n-3 immunoresolvents: structures and actions. Dalli J, Colas RA, Serhan CN. Sci Rep. 2013;3:1940. PubMed Europe PMC Scholia
  17. Prostaglandin E3 metabolism and cancer. Yang P, Jiang Y, Fischer SM. Cancer Lett. 2014 Jun 28;348(1–2):1–11. PubMed Europe PMC Scholia
  18. Maresin biosynthesis and identification of maresin 2, a new anti-inflammatory and pro-resolving mediator from human macrophages. Deng B, Wang CW, Arnardottir HH, Li Y, Cheng CYC, Dalli J, et al. PLoS One. 2014 Jul 18;9(7):e102362. PubMed Europe PMC Scholia
  19. Protectins and maresins: New pro-resolving families of mediators in acute inflammation and resolution bioactive metabolome. Serhan CN, Dalli J, Colas RA, Winkler JW, Chiang N. Biochim Biophys Acta. 2015 Apr;1851(4):397–413. PubMed Europe PMC Scholia
  20. Maresin-like lipid mediators are produced by leukocytes and platelets and rescue reparative function of diabetes-impaired macrophages. Hong S, Lu Y, Tian H, Alapure BV, Wang Q, Bunnell BA, et al. Chem Biol. 2014 Oct 23;21(10):1318–29. PubMed Europe PMC Scholia
  21. Novel proresolving and tissue-regenerative resolvin and protectin sulfido-conjugated pathways. Dalli J, Ramon S, Norris PC, Colas RA, Serhan CN. FASEB J. 2015 May;29(5):2120–36. PubMed Europe PMC Scholia
  22. Advances in Our Understanding of Oxylipins Derived from Dietary PUFAs. Gabbs M, Leng S, Devassy JG, Monirujjaman M, Aukema HM. Adv Nutr. 2015 Sep 15;6(5):513–40. PubMed Europe PMC Scholia
  23. PUFAs: Structures, Metabolism and Functions. Wiktorowska-Owczarek A, Berezińska M, Nowak JZ. Adv Clin Exp Med. 2015;24(6):931–41. PubMed Europe PMC Scholia
  24. Synthesis of 13(R)-Hydroxy-7Z,10Z,13R,14E,16Z,19Z Docosapentaenoic Acid (13R-HDPA) and Its Biosynthetic Conversion to the 13-Series Resolvins. Primdahl KG, Aursnes M, Walker ME, Colas RA, Serhan CN, Dalli J, et al. J Nat Prod. 2016 Oct 28;79(10):2693–702. PubMed Europe PMC Scholia
  25. Maresin conjugates in tissue regeneration biosynthesis enzymes in human macrophages. Dalli J, Vlasakov I, Riley IR, Rodriguez AR, Spur BW, Petasis NA, et al. Proc Natl Acad Sci U S A. 2016 Oct 25;113(43):12232–7. PubMed Europe PMC Scholia
  26. The novel lipid mediator PD1n-3 DPA: An overview of the structural elucidation, synthesis, biosynthesis and bioactions. Hansen TV, Dalli J, Serhan CN. Prostaglandins Other Lipid Mediat. 2017 Nov;133:103–10. PubMed Europe PMC Scholia
  27. Isoprostanes, neuroprostanes and phytoprostanes: An overview of 25years of research in chemistry and biology. Galano JM, Lee YY, Oger C, Vigor C, Vercauteren J, Durand T, et al. Prog Lipid Res. 2017 Oct;68:83–108. PubMed Europe PMC Scholia
  28. Effect of the dietary intake of melatonin- and hydroxytyrosol-rich wines by healthy female volunteers on the systemic lipidomic-related oxylipins. Marhuenda J, Medina S, Martínez-Hernández P, Arina S, Zafrilla P, Mulero J, et al. Food Funct. 2017 Oct 18;8(10):3745–57. PubMed Europe PMC Scholia
  29. Hallmarks of Cellular Senescence. Hernandez-Segura A, Nehme J, Demaria M. Trends Cell Biol. 2018 Jun;28(6):436–53. PubMed Europe PMC Scholia
  30. Maresins: Specialized Proresolving Lipid Mediators and Their Potential Role in Inflammatory-Related Diseases. Tang S, Wan M, Huang W, Stanton RC, Xu Y. Mediators Inflamm. 2018 Feb 20;2018:2380319. PubMed Europe PMC Scholia
  31. Omega-3 and omega-6 polyunsaturated fatty acids: Dietary sources, metabolism, and significance - A review. Saini RK, Keum YS. Life Sci. 2018 Jun 15;203:255–67. PubMed Europe PMC Scholia
  32. Resolvins in inflammation: emergence of the pro-resolving superfamily of mediators. Serhan CN, Levy BD. J Clin Invest. 2018 Jul 2;128(7):2657–69. PubMed Europe PMC Scholia
  33. Non-Targeted LC-MS/MS Assay for Screening Over 100 Lipid Mediators from ARA, EPA, and DHA in Biological Samples Based on Mass Spectral Fragmentations. Dasilva G, Muñoz S, Lois S, Medina I. Molecules. 2019 Jun 19;24(12):2276. PubMed Europe PMC Scholia
  34. Liquid chromatography-coupled mass spectrometry analysis of glutathione conjugates of oxygenated polyunsaturated fatty acids. Liening S, Romp E, Werz O, Scriba GKE, Garscha U. Prostaglandins Other Lipid Mediat. 2019 Oct;144:106350. PubMed Europe PMC Scholia
  35. FADS1 and FADS2 Polymorphisms Modulate Fatty Acid Metabolism and Dietary Impact on Health. Koletzko B, Reischl E, Tanjung C, Gonzalez-Casanova I, Ramakrishnan U, Meldrum S, et al. Annu Rev Nutr. 2019 Aug 21;39:21–44. PubMed Europe PMC Scholia
  36. Secretion of leukotrienes by senescent lung fibroblasts promotes pulmonary fibrosis. Wiley CD, Brumwell AN, Davis SS, Jackson JR, Valdovinos A, Calhoun C, et al. JCI Insight. 2019 Dec 19;4(24):e130056. PubMed Europe PMC Scholia
  37. First total syntheses of the pro-resolving lipid mediators 7(S),13(R),20(S)-Resolvin T1 and 7(S),13(R)-Resolvin T4. Rodriguez AR, Spur BW. Tetrahedron Lett. 2020 Feb 6;61(6):151473. PubMed Europe PMC Scholia
  38. 15-Lipoxygenase-1 biosynthesis of 7S,14S-diHDHA implicates 15-lipoxygenase-2 in biosynthesis of resolvin D5. Perry SC, Kalyanaraman C, Tourdot BE, Conrad WS, Akinkugbe O, Freedman JC, et al. J Lipid Res. 2020 Jul;61(7):1087–103. PubMed Europe PMC Scholia
  39. Maresins: anti-inflammatory pro-resolving mediators with therapeutic potential. Li QF, Hao H, Tu WS, Guo N, Zhou XY. Eur Rev Med Pharmacol Sci. 2020 Jul;24(13):7442–53. PubMed Europe PMC Scholia
  40. Specialized pro-resolving mediator network: an update on production and actions. Chiang N, Serhan CN. Essays Biochem. 2020 Sep 23;64(3):443–62. PubMed Europe PMC Scholia
  41. Effect of Prostanoids on Human Platelet Function: An Overview. Braune S, Küpper JH, Jung F. Int J Mol Sci. 2020 Nov 27;21(23):9020. PubMed Europe PMC Scholia
  42. Stereoselective Synthesis and Structural Confirmation of the Specialized Pro-Resolving Mediator Resolvin E4. Reinertsen AF, Primdahl KG, Shay AE, Serhan CN, Hansen TV, Aursnes M. J Org Chem. 2021 Feb 19;86(4):3535–45. PubMed Europe PMC Scholia
  43. A New E-Series Resolvin: RvE4 Stereochemistry and Function in Efferocytosis of Inflammation-Resolution. Libreros S, Shay AE, Nshimiyimana R, Fichtner D, Martin MJ, Wourms N, et al. Front Immunol. 2021 Feb 10;11:631319. PubMed Europe PMC Scholia
  44. Oxylipin biosynthesis reinforces cellular senescence and allows detection of senolysis. Wiley CD, Sharma R, Davis SS, Lopez-Dominguez JA, Mitchell KP, Wiley S, et al. Cell Metab. 2021 Jun 1;33(6):1124-1136.e5. PubMed Europe PMC Scholia
  45. Beneficial Outcomes of Omega-6 and Omega-3 Polyunsaturated Fatty Acids on Human Health: An Update for 2021. Djuricic I, Calder PC. Nutrients. 2021 Jul 15;13(7):2421. PubMed Europe PMC Scholia
  46. Specialized pro-resolving mediators: biosynthesis and biological role in bacterial infections. Jordan PM, Werz O. FEBS J. 2022 Jul;289(14):4212–27. PubMed Europe PMC Scholia
  47. New understandings of the pathway of long-chain polyunsaturated fatty acid biosynthesis. Brenna JT, Kothapalli KSD. Curr Opin Clin Nutr Metab Care. 2022 Mar 1;25(2):60–6. PubMed Europe PMC Scholia
  48. On the biosynthesis of specialized pro-resolving mediators in human neutrophils and the influence of cell integrity. Mainka M, George S, Angioni C, Ebert R, Goebel T, Kampschulte N, et al. Biochim Biophys Acta Mol Cell Biol Lipids. 2022 Mar;1867(3):159093. PubMed Europe PMC Scholia
  49. E-series resolvin metabolome, biosynthesis and critical role of stereochemistry of specialized pro-resolving mediators (SPMs) in inflammation-resolution: Preparing SPMs for long COVID-19, human clinical trials, and targeted precision nutrition. Serhan CN, Libreros S, Nshimiyimana R. Semin Immunol. 2022 Jan;59:101597. PubMed Europe PMC Scholia
  50. Resolvins, Protectins, and Maresins: DHA-Derived Specialized Pro-Resolving Mediators, Biosynthetic Pathways, Synthetic Approaches, and Their Role in Inflammation. Ferreira I, Falcato F, Bandarra N, Rauter AP. Molecules. 2022 Mar 3;27(5):1677. PubMed Europe PMC Scholia
  51. Key Enzymes in Fatty Acid Synthesis Pathway for Bioactive Lipids Biosynthesis. Zhuang XY, Zhang YH, Xiao AF, Zhang AH, Fang BS. Front Nutr. 2022 Feb 23;9:851402. PubMed Europe PMC Scholia
  52. The role of Resolvin D1 in liver diseases. Yang M, Song XQ, Han M, Liu H. Prostaglandins Other Lipid Mediat. 2022 Jun;160:106634. PubMed Europe PMC Scholia
  53. Polyunsaturated fatty acids and fatty acid-derived lipid mediators: Recent advances in the understanding of their biosynthesis, structures, and functions. Dyall SC, Balas L, Bazan NG, Brenna JT, Chiang N, da Costa Souza F, et al. Prog Lipid Res. 2022 Apr;86:101165. PubMed Europe PMC Scholia
  54. Protective Potential of Maresins in Cardiovascular Diseases. Liu M, He H, Chen L. Front Cardiovasc Med. 2022 Jul 4;9:923413. PubMed Europe PMC Scholia
  55. Protectins: Their biosynthesis, metabolism and structure-functions. Vidar Hansen T, Serhan CN. Biochem Pharmacol. 2022 Dec;206:115330. PubMed Europe PMC Scholia
  56. Formation of lipoxins and resolvins in human leukocytes. Kahnt AS, Schebb NH, Steinhilber D. Prostaglandins Other Lipid Mediat. 2023 Jun;166:106726. PubMed Europe PMC Scholia
  57. The biosynthetic pathways of the protectins. Stenvik Haatveit Å, Hansen TV. Prostaglandins Other Lipid Mediat. 2023 Dec;169:106787. PubMed Europe PMC Scholia