ADHD and autism (ASD) pathways (WP5420)
Homo sapiens
Pathways associated with attention deficit hyperactivity disorder (ADHD) and autism spectrum disorder (ASD). Neurodivergent conditions linked in studies to these pathways include ADHD, autism, dyspraxia, dyslexia, dyscalculia, bipolar disorder, obsessive-compulsive disorder, sensory processing disorders, and Tourette syndrome. This aims to be a highly detailed, comprehensive map of the metabolic pathways associated with these disorders, from indicated input vitamins through synthesis to signaling across the synaptic gap, re-uptake, and catabolism receptors. This pathway is constructed with computational analysis and machine learning in mind. In cases where there is a trade-off between readability and parametric accuracy, parametric accuracy is prioritized. This pathway is inspired by Kimberly Kitzerow and her meta-analysis research on the biomechanisms and pathways behind invisible illnesses. https://kimberly102347.com/the-chart/ Pathways included in this map: One-Carbon (1C), Metabolism Folate Cycle, Methionine Cycle, Tetrahydrobiopterin (BH4) Pathway, Neurotransmitter Synthesis, Reuptake, and Breakdown, Kynurenine Pathway (KP), Endocannabinoid System (ECS), Neuroreceptor Dynamics in the Synaptic Cleft, ROS Reactive Oxygen Stress.
Authors
Alexmadsen1 , Egon Willighagen , Kristina Hanspers , Lars Willighagen , Eric Weitz , and Denise SlenterActivity
Discuss this pathway
Check for ongoing discussions or start your own.
Cited In
Are you planning to include this pathway in your next publication? See How to Cite and add a link here to your paper once it's online.
Organisms
Homo sapiensCommunities
Annotations
Disease Ontology
attention deficit hyperactivity disorder autism spectrum disorder generalized anxiety disorder anxiety disorderPathway Ontology
endocannabinoid metabolic pathway kynurenine metabolic pathway folate metabolic pathway epinephrine signaling pathway neurotransmitter metabolic pathway endocannabinoid signaling pathway methionine cycle/metabolic pathway folate mediated one-carbon metabolic pathway tetrahydrobiopterin metabolic pathwayLabel | Type | Compact URI | Comment |
---|---|---|---|
L-ornithine | Metabolite | chebi:46911 | |
sarcosine | Metabolite | chebi:57433 | |
vitamin B6 | Metabolite | chebi:27306 | |
fumarate | Metabolite | chebi:29806 | |
guanidinoacetate | Metabolite | chebi:57742 | |
Mo-MPT | Metabolite | chebi:71302 | Mo-molybdopterin |
hydroxocobalamin | Metabolite | chebi:27786 | |
NMPEA | Metabolite | chembl.compound:CHEMBL45763 | |
2-phenylacetaldehyde | Metabolite | chebi:16424 | |
Zn2+ | Metabolite | chebi:29105 | |
phenylethylamine2-phenylethylaminePEA | Metabolite | chebi:225237 | |
CARI | Metabolite | chebi:77657 | |
PA | Metabolite | chebi:17405 | 4-pyridoxic acid |
DAG | Metabolite | kegg.drug:C00165 | |
glycine | Metabolite | chebi:57305 | |
creatine | Metabolite | chebi:57947 | |
MN2+ | Metabolite | chebi:29035 | |
THF-polyglutamate | Metabolite | chebi:28624 | |
3-MT SO | Metabolite | chebi:133708 | |
Imidazole-4-acetate | Metabolite | chebi:16974 | |
a 1-(1-hydroxyalkyl)-sn-glycerol | Metabolite | chebi:73418 | |
FMN | Metabolite | chebi:cHEBI:58210 | |
H2O2 | Metabolite | chebi:16240 | |
DHMA | Metabolite | chebi:27637 | |
1-O-(1,2-saturated-alkyl)-sn-glycerol | Metabolite | chebi:83957 | |
q-BH2 | Metabolite | chebi:43029 | |
angiotensin I | Metabolite | chebi:147350 | |
SAMe | Metabolite | chebi:59789 | |
L-tryptophan | Metabolite | chebi:57912 | |
serine | Metabolite | wikidata:Q82980657 | |
NMN-SO | Metabolite | hmdb:HMDB0240719 | |
PPH4 | Metabolite | chebi:17804 | |
serotonin | Metabolite | chebi:350546 | |
sepiapterin | Metabolite | chebi:16095 | |
MG2+ | Metabolite | chebi:18420 | |
NormetanephrineNM | Metabolite | chebi:89951 | |
THF | Metabolite | chebi:26907 | |
NO | Metabolite | chebi:16480 | |
formate | Metabolite | chebi:15740 | |
L-citrulline | Metabolite | chebi:57743 | |
FAD | Metabolite | chebi:57692 | |
Metanephrine | Metabolite | chebi:89633 | |
tyramine | Metabolite | chebi:327995 | |
glycine betaine | Metabolite | chebi:17750 | |
taurine | Metabolite | chebi:507393 | |
5-MTHF | Metabolite | chebi:15641 | |
MOPGAL | Metabolite | chebi:27932 | |
AdoCbl | Metabolite | chebi:18408 | |
MeCbl(III)alamin | Metabolite | chebi:28115 | |
deamido-NAD+ | Metabolite | chebi:58437 | |
L-histidinol | Metabolite | chebi:57699 | |
DHNTP | Metabolite | chebi:18372 | |
L-cysteate | Metabolite | chebi:58090 | |
melatonin | Metabolite | chebi:16796 | |
3-MT | Metabolite | chebi:1582 | |
5-10MeTHF | Metabolite | chebi:20502 | |
10-formyl-THF | Metabolite | chebi:15637 | |
O2− | Metabolite | chebi:18421 | |
DOPL | Metabolite | chebi:27978 | |
5, 10-MTHFPG | Metabolite | chebi:60976 | |
4-aminobutanoate | Metabolite | chebi:30566 | |
L-tyrosine | Metabolite | chebi:58315 | |
MN-SO4 | Metabolite | hmdb:HMDB0240719 | |
nicotinate D-ribonucleotide(2−) | Metabolite | chebi:57502 | |
N-METHYL-HISTAMINE | Metabolite | chebi:58600 | |
B9 | Metabolite | chebi:27470 | |
dopamine | Metabolite | chebi:59905 | |
cysteine sulfinate | Metabolite | chebi:61085 | |
SAH | Metabolite | chebi:16680 | |
L-dopa | Metabolite | chebi:57504 | |
MHPGMOPEG | Metabolite | chebi:1576 | |
DOPET | Metabolite | chebi:68889 | |
FLAD1 | Metabolite | chebi:Q8NFF5 | |
Biopterin | Metabolite | chebi:15373 | |
histamine | Metabolite | chebi:58432 | |
1′-OXPH4 | Metabolite | hmdb:HMDB0013642 | 1'-oxo-2'-hydroxypropyl-tetrahydropterin |
H4gtpGPT | Metabolite | chebi: | |
N-Methylhistamine | Metabolite | chebi:29009 | |
imidazole-4-acetaldehyde | Metabolite | chebi:27398 | |
q-H2BPT | Metabolite | chebi:43120 | |
NAS | Metabolite | chebi:17697 | |
L-alanine | Metabolite | chebi:57972 | |
5-MT | Metabolite | chebi:2089 | |
Fe2+ | Metabolite | chebi:29033 | |
glycerol | Metabolite | chebi:17754 | |
O2 | Metabolite | chebi:5379 | |
L-histidine | Metabolite | chebi:57595 | |
DOPAC | Metabolite | chebi:41941 | |
fatty aldehydes | Metabolite | chebi:35746 | |
DHPG | Metabolite | chebi:1387 | |
hemiacetals | Metabolite | chebi:5653 | |
alkylglycerols | Metabolite | chebi:52575 | |
Xanthurenic acid | Metabolite | chebi:10072 | |
2-oxoglutarate | Metabolite | chebi:16810 | |
Met | Metabolite | chebi:64558 | |
noladin ether | Metabolite | chebi:75913 | |
acetate | Metabolite | chebi:58251 | |
DHF | Metabolite | chebi:23743 | |
MoCo | Metabolite | chebi:71302 | |
L-glutamine | Metabolite | chebi:58359 | |
(4aS,6R)-4a-hydroxy - BH4 | Metabolite | chebi:15642 | |
5-Hial | Metabolite | chebi:50157 | |
moco sulfide | Metabolite | chebi:82685 | |
HVAL | Metabolite | chebi:173769 | HVAL = Homovanillyl = alcohol(4-Hydroxy-3-methoxyphenyl)ethanol |
glycerol 3-phosphate | Metabolite | chebi:57597 | |
Angiotensinogen | Metabolite | chebi:2720 | |
hypotaurine | Metabolite | chebi:57853 | |
DOPGAL | Metabolite | chebi:180943 | |
B2 | Metabolite | chebi:17015 | |
OH- | Metabolite | chebi:16234 | |
6R-BH4 | Metabolite | chebi:59560 | |
adrenaline | Metabolite | chebi:28918 | |
arachidonic acid | Metabolite | chebi:15843 | |
cystathionine | Metabolite | chebi:58161 | |
DOPEG | Metabolite | chebi:1387 | |
5-hydroxy-L-tryptophan | Metabolite | chebi:58266 | |
L-arginine | Metabolite | chebi:32682 | |
L-cysteine | Metabolite | chebi:35235 | |
L-phenylalanine | Metabolite | chebi:58095 | |
2′-OXPH4 | Metabolite | chebi:17248 | 1'-hydroxy-2'-oxopropyl-tetrahydropterin (2'-OXPH4) |
homocysteine | Metabolite | chebi:58199 | |
BH4 | Metabolite | chebi:15372 | |
BH27,8-dihydrofolate | Metabolite | chebi:64240 | |
NADP | Metabolite | chebi:58349 | |
NADPH | Metabolite | chebi:57783 | |
ONOO- | Metabolite | chebi:25941 | |
norepinephrine | Metabolite | chebi:72587 | |
VMA | Metabolite | chebi:27622 | |
HVA | Metabolite | chebi:545959 | AKA HVA |
5-HIAA | Metabolite | chebi:27823 | AKA 5-HIAA |
Clonidine | Metabolite | chebi:46631 | |
Guanfacine | Metabolite | hmdb:HMDB15153 | |
Prazosin | Metabolite | hmdb:HMDB14600 | |
L-glutamate | Metabolite | chebi:29985 | |
L-Asp | Metabolite | chebi:29991 | |
Ca2+ | Metabolite | chebi:29108 | |
oxytocin | Metabolite | chebi:7872 | |
angiotensin II | Metabolite | chebi:58506 | |
3-Hydroxykynurenine | Metabolite | chebi:1547 | |
Kynurenic Acid | Metabolite | chebi:58454 | |
Picolinic Acid | Metabolite | chebi:28747 | |
3-Hydroxyanthranilic Acid | Metabolite | chebi:15793 | |
Quinolinic AcidQUIN | Metabolite | chebi:16675 | |
Anthranilic Acid | Metabolite | chebi:16567 | |
Kynurenine | Metabolite | chebi:57959 | |
NAD+ | Metabolite | chebi:13389 | |
QUIN | Metabolite | chebi:16675 | |
NorepinephrineNA | Metabolite | chebi:72587 | |
gamma-hydroxybutyrate | Metabolite | wikidata:Q207920 | |
GABA | Metabolite | chebi:59888 | |
succinate | Metabolite | wikidata:Q213050 | |
succinic semialdehyde | Metabolite | chebi:57706 | |
2A-3OBU | Metabolite | chebi:78948 | |
L-threonine | Metabolite | chebi:57926 | |
PLP | Metabolite | chebi:597326 | |
Succinyl-CoA | Metabolite | chebi:15380 | |
R-cob(III)alamin | Metabolite | chebi:140785 | |
cob(I)alamin | Metabolite | chebi:15982 | |
Methylmalonyl-CoA | Metabolite | chebi:16625 | |
FMN | Metabolite | chebi:cHEBI:58210 | cofactor |
11-OH-THC | Metabolite | hmdb:HMDB0060906 | |
Phosphatidylethanolamine | Metabolite | hmdb:HMDB0060501 | |
cAMP | Metabolite | chebi:58165 | |
NAPE | Metabolite | chebi:61232 | |
Arachidonic acid | Metabolite | hmdb:HMDB0001043 | |
THC | Metabolite | hmdb:HMDB0041865 | Tetrahydrocannabinol (THC) is the primary psychoactive compound found in cannabis plants. Its effects on cannabinoid receptors CNR1 (CB1) and CNR2 (CB2) are well-documented: CB1 Receptor Interaction: THC is a partial agonist at the CB1 receptor. When it binds to the CB1 receptor, it activates the receptor to a degree, eliciting a psychoactive response which is often associated with the 'high' experienced from cannabis consumption. CB2 Receptor Interaction: THC is also a partial agonist at the CB2 receptor, although its affinity for the CB2 receptor is less compared to the CB1 receptor. The activation of CB2 receptors by THC is associated with some of the medicinal properties of cannabis, such as its anti-inflammatory effects. In summary, THC acts as a partial agonist at both CB1 and CB2 receptors, stimulating these receptors to produce a variety of effects in the body, including psychoactive and potential therapeutic effects. Unlike CBD, THC does not act as an antagonist or inhibitor at these receptors, and its binding and activation of CB1 and CB2 receptors are central to its effects. |
1''-hydroxycannabidiol | Metabolite | chebi:133056 | |
2-AG | Metabolite | chebi:52392 | 2-arachidonoylglycerol |
ATP | Metabolite | hmdb:HMDB0000538 | |
AEA | Metabolite | chebi:2700 | anandamide |
COOH-THC | Metabolite | chebi:77273 | |
CBD | Metabolite | chebi:69478 | Per GPT: Cannabidiol (CBD) has a complex interaction with cannabinoid receptors CNR1 (CB1) and CNR2 (CB2). It doesn't bind to these receptors with high affinity in the same way that other cannabinoids like THC do. Here's a breakdown of CBD's interaction with CB1 and CB2 receptors: CB1 Receptor Interaction: CBD is often described as an antagonist or inverse agonist at the CB1 receptor, meaning it can block or inhibit the effects of CB1 agonists like THC. By doing so, it can counteract some of the psychoactive effects of THC. CB2 Receptor Interaction: At the CB2 receptor, CBD acts as an inverse agonist, similar to its action at the CB1 receptor. The CB2 receptor is mainly found in the immune system, and its activation is associated with anti-inflammatory effects. Allosteric Modulation: Besides acting as an antagonist or inverse agonist, CBD is also known as an allosteric modulator. As an allosteric modulator, CBD can change the shape of the CB1 receptor in a way that inhibits other compounds' ability to bind to the receptor or changes the effect if binding occurs. This is not the same as directly binding to the receptor and activating it (as an agonist would) or blocking its activation (as an antagonist would). Indirect Effects: CBD has several indirect effects on the endocannabinoid system, such as increasing anandamide levels by inhibiting its uptake and degradation. Anandamide is an endogenous cannabinoid that acts as an agonist at both CB1 and CB2 receptors. Non-Cannabinoid Receptor Interactions: CBD also interacts with several other non-cannabinoid receptors and channels which contribute to its wide range of effects. |
2''-hydroxycannabidiol | Metabolite | chebi:133058 | |
3''-hydroxycannabidiol | Metabolite | chebi:133059 | |
4''-hydroxycannabidiol | Metabolite | chebi:133055 | |
5''-hydroxycannabidiol | Metabolite | chebi:133062 | |
6a-hydroxycannabidiol | Metabolite | chebi:133049 | |
6b-hydroxycannabidiol | Metabolite | chebi:133052 | |
7-hydroxycannabidiol | Metabolite | chebi:133053 | |
CBD | Metabolite | chebi:69478 | |
KUVAN(BH4 Supplement) | Metabolite | chebi:15372 | |
Amphetamine | Metabolite | drugbank:DB00182 | |
Viloxazine(Qelbree) | Metabolite | chebi:94405 | |
Ketamine | Metabolite | chebi:6121 | |
Methylphenidate(Ritalin) | Metabolite | hmdb:HMDB14566 | |
NDRIBupropion (Wellbutrin) | Metabolite | drugbank:DB01156 | |
Risperidone | Metabolite | drugbank:DB00734 | |
PIP2 | Metabolite | wikidata:Q413692 | |
PIP3 | Metabolite | chebi:16618 | |
cob(II)alamin | Metabolite | chebi:16304 | Should be cob(II)alamin according to literature |
FAD | Metabolite | chebi:57692 | cofactor |
PtdIns3P | Metabolite | chebi:26034 | |
acetyl-CoA | Metabolite | chebi:57288 | |
malonyl-CoA | Metabolite | chebi:57384 | |
Cbl | Metabolite | chebi:23334 | |
cobalamins | Metabolite | chebi:23334 | |
PLP | Metabolite | chebi:597326 | pyridoxal 5'-phosphate |
PMP | Metabolite | chebi:18335 | pyridoxamine 5'-phosphate |
PNP | Metabolite | chebi:28803 | pyridoxine 5′-phosphate |
PNG | Metabolite | chebi:17382 | pyridoxine-5′-β-D-glucoside |
PL | Metabolite | chebi:17310 | pyridoxal |
PM | Metabolite | chebi:57761 | pyridoxamine |
PN | Metabolite | chebi:28803 | pyridoxine, vitamin B6 |
Mg2+ | Metabolite | chebi:18420 | |
ATP | Metabolite | chebi:30616 | |
XMP | Metabolite | chebi:57464 | |
SAICARP | Metabolite | chebi:58443 | |
AICA-riboside | Metabolite | chebi:28498 | |
AMP | Metabolite | chebi:456215 | |
Xanthosine | Metabolite | chebi:18107 | |
2'-Deoxyadenosine | Metabolite | chebi:17256 | |
Inosine | Metabolite | chebi:17596 | |
GDP | Metabolite | chebi:58189 | |
SAICA-riboside | Metabolite | chebi:18319 | |
dGDP | Metabolite | chebi:58595 | |
Succinyladenosine | Metabolite | chebi:71169 | |
dATP | Metabolite | chebi:61404 | |
AICARP | Metabolite | chebi:58475 | |
2,8-Dihydroxyadenine | Metabolite | wikidata:Q4596812 | |
dADP | Metabolite | chebi:57667 | |
Adenosine | Metabolite | chebi:16335 | |
dAMP | Metabolite | chebi:58245 | |
ITP | Metabolite | chebi:61402 | is a nucleoside triphosphate(4−) |
Hypoxanthine | Metabolite | chebi:17368 | |
Guanosine | Metabolite | chebi:16750 | |
S-AMP | Metabolite | chebi:57567 | succinyladenosine monophosphate |
Xanthine | Metabolite | chebi:17712 | |
ADP | Metabolite | chebi:456216 | |
GTP | Metabolite | chebi:37565 | |
dGTP | Metabolite | chebi:16497 | |
Urate | Metabolite | chebi:17775 | |
Adenine | Metabolite | chebi:16708 | |
Guanine | Metabolite | chebi:16235 | |
dGMP | Metabolite | chebi:57673 | |
FAICARP | Metabolite | chebi:58467 | |
2-Deoxyguanosine | Metabolite | chebi:17172 | |
GMP | Metabolite | chebi:58115 | |
2'-deoxyinosine | Metabolite | chebi:28997 | |
IMP | Metabolite | chebi:58053 | |
Propranolol | Metabolite | drugbank:DB00571 | |
Nadolol | Metabolite | drugbank:DB01203 | |
Dextroamphetamine | Metabolite | drugbank:DB01576 | |
PRKAA1 | GeneProduct | uniprot:Q13131 | |
GATM | GeneProduct | uniprot:P50440 | |
CALM3 | GeneProduct | uniprot:P0DP23 | |
PLCG1 | GeneProduct | uniprot:P19174 | |
SESN1 | GeneProduct | uniprot:Q9Y6P5 | |
CNTN6 | GeneProduct | uniprot:Q12860 | |
rs237897 | GeneProduct | dbsnp:rs237897 | |
HNMT | GeneProduct | uniprot:P50135 | |
ACE | GeneProduct | uniprot:P12821 | |
HCFC1 (cblX) | GeneProduct | uniprot:P51610 | |
CNTN1 | GeneProduct | uniprot:Q9UQ52 | |
FOLH1 | GeneProduct | uniprot:Q04609 | |
CNTNAP4 | GeneProduct | uniprot:Q9C0A0 | |
SLC17A6 | GeneProduct | uniprot:Q9P2U8 | |
DAG1 | GeneProduct | uniprot:Q14118 | |
GCAT | GeneProduct | uniprot:O75600 | |
rs35062132 | GeneProduct | dbsnp:rs35062132 | |
rs237889 | GeneProduct | dbsnp:rs237889 | |
SLC17A8 | GeneProduct | uniprot:Q9P2U8 | |
AOC1 | GeneProduct | uniprot:P19801 | |
SIRT3 | GeneProduct | uniprot:Q9NTG7 | |
ALDH9A1 | GeneProduct | uniprot:P49189 | |
HDC | GeneProduct | uniprot:P19113 | |
FAAH2 | GeneProduct | uniprot:Q6GMR7 | |
CNTNAP2 | GeneProduct | uniprot:Q9UHC6 | |
rs2268491 | GeneProduct | dbsnp:rs2268491 | |
rs7632287 | GeneProduct | dbsnp:rs7632287 | |
CNTN2 | GeneProduct | uniprot:O94779 | |
CNTNAP1 | GeneProduct | uniprot:P78357 | |
SLC52A2 | GeneProduct | uniprot:Q9HAB3 | |
CNTN5 | GeneProduct | uniprot:Q02246 | |
rs53576 | GeneProduct | dbsnp:rs53576 | |
SLC52A1 | GeneProduct | uniprot:Q9NWF4 | |
rs151257822 | GeneProduct | dbsnp:rs151257822 | |
rs237902 | GeneProduct | dbsnp:rs237902 | |
SLC52A3 | GeneProduct | uniprot:Q9NQ40 | |
CNTN4 | GeneProduct | uniprot:Q9P232 | |
rs237887 | GeneProduct | dbsnp:rs237887 | |
CDO1 | GeneProduct | uniprot:Q16878 | |
FMO1 | GeneProduct | uniprot:Q01740 | |
CNTN3 | GeneProduct | uniprot:Q8IWV2 | |
CNTNAP3 | GeneProduct | uniprot:Q9BZ76 | |
GLUL | GeneProduct | uniprot:P15104 | |
rs2254298 | GeneProduct | dbsnp:rs2254298 | |
DRD3 | GeneProduct | ncbigene:282554 | |
DRD4 | GeneProduct | uniprot:P21917 | |
DRD2 | GeneProduct | uniprot:P14416 | |
DRD1 | GeneProduct | ncbigene:568126 | |
ADRA2C | GeneProduct | ncbigene:266752 | |
ADRB3a | GeneProduct | ncbigene:558248 | |
ADRA1B | GeneProduct | uniprot:P35368 | |
ADRA2A | GeneProduct | ncbigene:266750 | |
ADRB1 | GeneProduct | ncbigene:557194 | |
ADRA2B | GeneProduct | ncbigene:266751 | |
ADRA1D | GeneProduct | uniprot:P25100 | |
ADRB2 | GeneProduct | uniprot:P07550 | |
DLGAP5 | GeneProduct | uniprot:Q15398 | |
DLGAP3 | GeneProduct | uniprot:O95886 | |
DLGAP4 | GeneProduct | uniprot:Q9Y2H0 | |
DLGAP2 | GeneProduct | uniprot:Q9P1A6 | |
CTNNB1 | GeneProduct | ensembl:ENSG00000168036 | |
DLGAP1 | GeneProduct | uniprot:O14490 | |
Cortactin | GeneProduct | ensembl:ENSG00000085733 | |
PSD95 | GeneProduct | uniprot:P78352 | |
GKAP1 | GeneProduct | uniprot:Q5VSY0 | |
PLCB | GeneProduct | uniprot:P50148 | |
GAD2 | GeneProduct | uniprot:Q05329 | |
GAD1 | GeneProduct | uniprot:Q99259 | |
SLC6A1 | GeneProduct | uniprot:P30531 | |
FMO3 | GeneProduct | uniprot:Q01740 | |
CYP3A4 | GeneProduct | ensembl:ENSG00000160868 | |
CYP2C19 | GeneProduct | ensembl:ENSG00000165841 | |
ADCY1 | GeneProduct | uniprot:58165 | |
CNR1 | GeneProduct | uniprot:P21554 | CB1 |
CYP2C9 | GeneProduct | ensembl:ENSG00000138109 | |
MAPK | GeneProduct | eccode:2.7.11.24 | |
DAGLB | GeneProduct | ensembl:ENSG00000164535 | |
ADCY7 | GeneProduct | uniprot:ADCY7 | |
DAGLA | GeneProduct | ensembl:ENSG00000134780 | |
FAAH | GeneProduct | ensembl:ENSG00000117480 | |
ADORA2A | GeneProduct | uniprot:P29274 | |
CNR2 | GeneProduct | uniprot:P34972 | CB2 |
PRKACB | GeneProduct | ensembl:ENSG00000142875 | |
PRKACA | GeneProduct | ensembl:ENSG00000072062 | |
PRKAR1A | GeneProduct | ensembl:ENSG00000108946 | |
PRKAR2B | GeneProduct | ensembl:ENSG00000005249 | |
PRKAR1B | GeneProduct | ensembl:ENSG00000188191 | |
PRKACG | GeneProduct | ensembl:ENSG00000165059 | |
PRKAR2A | GeneProduct | ena.embl:ENSG00000114302 | |
PIK3AP1 | GeneProduct | uniprot:Q6ZUJ8 | |
AKT1 | GeneProduct | uniprot:P31749 | |
PTEN | GeneProduct | uniprot:P60484 | GPT4: The PTEN gene, known for its role in cell growth and survival, has a notable connection with Autism Spectrum Disorder (ASD) and a potential link to Attention Deficit Hyperactivity Disorder (ADHD): ASD and PTEN: Mutations in PTEN are associated with an increased risk of ASD. These mutations can lead to macrocephaly (an unusually large head) and disrupt the PI3K/AKT/mTOR pathway, crucial for brain development. This disruption may contribute to ASD development. ADHD and PTEN: The link between PTEN and ADHD is less established. While PTEN is involved in neural development, ADHD is primarily associated with neurotransmitter systems. The potential impact of PTEN on ADHD requires more research. Overall, PTEN is more clearly linked to ASD through its role in neural pathways, while its connection to ADHD is still under investigation. 'We have identified a distinct neuropsychological profile associated with mutations in PTEN suggesting primary disruption of frontal lobe systems21,22. Specifically, individuals with PTEN mutations showed reduced performance on measures of attention, impulsivity, reaction time, processing speed, and motor coordination, consistent with our pilot findings in independent patient cohorts19,20. This pattern of cognitive deficits may be related to neuroanatomical abnormalities. PTEN is a dual-specificity phosphatase that is a major inhibitor of the PI3K-AKT pathway23–25 with downstream effects on mTOR signaling, which helps regulate neural cell growth and proliferation26.' doi: 10.1038/s41398-019-0588-1 |
AKT2 | GeneProduct | uniprot:P31751 | |
AKT3 | GeneProduct | uniprot:Q9Y243 | |
PLCG2 | GeneProduct | uniprot:P16885 | |
MLST8 | GeneProduct | ensembl:ENSG00000167965 | |
AKT1S1 | GeneProduct | ensembl:ENSG00000204673 | |
RPTOR | GeneProduct | ensembl:ENSG00000141564 | |
DEPTOR | GeneProduct | ensembl:ENSG00000155792 | |
MTOR | GeneProduct | ensembl:ENSG00000198793 | effect of AKT on MTOR is indirectPart of two multiprotein complexes, TORC 1 and TORC 2 |
MAPKAP1 | GeneProduct | ensembl:ENSG00000119487 | |
RICTOR | GeneProduct | ensembl:ENSG00000164327 | |
MECP2 | GeneProduct | ensembl:ENSG00000169057 | linkages between MECP2, PTEN, PRKCB, mTORC1, mTORC2, and their relationship to ASD and Rett Syndrome, as well as the connection between Rett Syndrome and ASD at a biological pathway level: MECP2 and mTOR Pathway in Rett Syndrome: MECP2 mutations in Rett Syndrome can disrupt mTOR signaling. This affects neuronal development, synaptic formation, and plasticity, which are crucial for brain function. PTEN and ASD: PTEN is a gene that negatively regulates the mTOR pathway. Mutations in PTEN can lead to hyperactivation of mTOR, contributing to neurodevelopmental issues associated with ASD, including abnormal neuronal growth. PRKCB and mTOR in ASD: PRKCB influences the mTOR pathway. Its dysregulation in ASD can impact neuronal signaling and function, potentially leading to ASD-related neurological abnormalities. mTORC1 and mTORC2 in Both Disorders: Both mTORC1 and mTORC2 play key roles in neuronal health. In Rett Syndrome and ASD, the imbalance in these complexes' activities can lead to synaptic dysfunctions, altered neuron morphology, and cognitive and behavioral impairments. Common Biological Pathways in Rett Syndrome and ASD: Both disorders exhibit disruptions in the mTOR signaling pathway, affecting brain development and function. This includes impacts on neuron growth, synaptic plasticity, and brain connectivity, which are fundamental in both Rett Syndrome and ASD. In essence, both Rett Syndrome and ASD share a critical commonality in the dysregulation of the mTOR pathway and its impact on brain development and function. The genes MECP2, PTEN, and PRKCB all intersect with the mTOR pathway, influencing the development and severity of these neurodevelopmental disorders. |
PRKAA2 | GeneProduct | uniprot:P54646 | |
PIK3C3 | GeneProduct | ensembl:ENSG00000078142 | |
ATG10 | GeneProduct | ensembl:ENSG00000152348 | |
WIPI2 | GeneProduct | ensembl:ENSG00000157954 | |
ATG7 | GeneProduct | ensembl:ENSG00000197548 | |
ATG14 | GeneProduct | ensembl:ENSG00000126775 | |
ATG13 | GeneProduct | ensembl:ENSG00000175224 | |
RB1CC1 | GeneProduct | ensembl:ENSG00000023287 | |
AMPK | GeneProduct | ensembl:ENSG00000132356 | |
ULK1 | GeneProduct | ensembl:ENSG00000177169 | |
ATG16L1 | GeneProduct | ensembl:ENSG00000085978 | |
ATG12 | GeneProduct | ensembl:ENSG00000145782 | |
BECN1 | GeneProduct | ensembl:ENSG00000126581 | |
LC3 | GeneProduct | ensembl:ENSG00000101460 | |
ATG2A | GeneProduct | ensembl:ENSG00000110046 | |
LKB1 | GeneProduct | ensembl:ENSG00000118046 | |
PIK3R4 | GeneProduct | ensembl:ENSG00000196455 | |
ATG5 | GeneProduct | ensembl:ENSG00000057663 | |
WIPI1 | GeneProduct | ensembl:ENSG00000070540 | |
ATG4 | GeneProduct | ensembl:ENSG00000101844 | |
WDR45 | GeneProduct | ensembl:ENSG00000196998 | |
ATG101 | GeneProduct | ensembl:ENSG00000123395 | |
ATG3 | GeneProduct | ensembl:ENSG00000144848 | |
ACACA | GeneProduct | ensembl:ENSG00000278540 | |
SESN2 | GeneProduct | uniprot:P58004 | |
SLC25A39 | GeneProduct | uniprot:Q9BZJ4 | |
SCN2A | Protein | uniprot:Q99250 | |
TP53 | Protein | dbsnp:P04637 | |
RHOA | Protein | uniprot:P61586 | |
INSR | Protein | uniprot:P06213 | |
NGLY1 | Protein | uniprot:Q96IV0 | PNG hydrolase, PNGH |
ALPI | Protein | uniprot:P09923 | Intestinal-type alkaline phosphatase |
RHEB | Protein | uniprot:Q15382 | |
AOX1 | Protein | uniprot:Q06278 | Aldehyde oxidase |
PDGFRA | Protein | uniprot:P16234 | |
EGFR | Protein | uniprot:P00533 | |
KIT | Protein | uniprot:P10721 | |
MAPK1 | Protein | dbsnp:P28482 | |
SCN1A | Protein | uniprot:P35498 | |
ALDH2 | Protein | uniprot:P05091 | |
NOX4 | Protein | uniprot:Q9NPH5 | |
SCN4B | Protein | uniprot:Q8IWT1 | |
ADAM10 | Protein | uniprot:O14672 | |
GABRA2 | Protein | uniprot:P47869 | |
PCBD1 | Protein | uniprot:P61457 | |
PCBD2 | Protein | uniprot:Q9H0N5 | |
SLC25A32 | Protein | uniprot:Q9H2D1 | |
AANAT | Protein | uniprot:Q16613 | |
SCN5A | Protein | uniprot:Q14524 | |
MAOA | Protein | uniprot:P21397 | |
TY | Protein | uniprot:P07101 | |
CSAD | Protein | uniprot:Q9Y600 | |
PTS | Protein | uniprot:Q03393 | |
GABRB3 | Protein | uniprot:P28472 | |
MAOB | Protein | uniprot:P27338 | |
CBS | Protein | uniprot:P35520 | |
GABRA3 | Protein | uniprot:P34903 | |
GABRA5 | Protein | uniprot:P31644 | |
SLC18A2 | Protein | uniprot:P23975 | The SLC18A2 gene encodes the vesicular monoamine transporter 2 (VMAT2), which is primarily involved in the transport of various monoamine neurotransmitters into synaptic vesicles. The types of neurotransmitters that use VMAT2 for vesicular transport include: Primary Neurotransmitters Transported by VMAT2 Dopamine Function: Dopamine is essential for reward, motivation, motor control, and various other brain functions. It plays a critical role in conditions like Parkinson's disease, schizophrenia, and addiction. Transport: VMAT2 is the primary transporter for loading dopamine into synaptic vesicles in dopaminergic neurons. Norepinephrine (Noradrenaline) Function: Norepinephrine is involved in attention, arousal, and the fight-or-flight response. Transport: VMAT2 is responsible for transporting norepinephrine into vesicles in noradrenergic neurons. Serotonin (5-HT) Function: Serotonin regulates mood, appetite, sleep, and other functions. It is crucial in the pathophysiology of depression and anxiety disorders. Transport: VMAT2 also transports serotonin into synaptic vesicles in serotonergic neurons. Histamine Function: Histamine plays a role in sleep-wake regulation, immune responses, and gastric acid secretion. Transport: VMAT2 transports histamine into vesicles in histaminergic neurons. Additional Role of VMAT2 VMAT2 is known for its broad specificity and efficiency in transporting monoamines into synaptic vesicles across different types of monoaminergic neurons. This makes it a key transporter for various critical neurotransmitters involved in multiple neurophysiological processes. Summary VMAT2 (encoded by SLC18A2) is the primary vesicular transporter for several key monoamine neurotransmitters, including dopamine, norepinephrine, serotonin, and histamine. It is predominantly used in dopaminergic, noradrenergic, serotonergic, and histaminergic neurons to load these neurotransmitters into synaptic vesicles, facilitating their storage and release during synaptic transmission. |
GLS | Protein | uniprot:O94925 | |
SLC46A1 | Protein | uniprot:Q96NT5 | |
CPLX1 | Protein | uniprot:O14810 | |
SHMT2 | Protein | uniprot:P34897 | |
OPRM1 | Protein | uniprot:P35372 | |
CYP2D6 | Protein | uniprot:P10635 | |
SCN10A | Protein | uniprot:Q9Y5Y9 | |
ALDH5A1 | Protein | uniprot:57706 | |
SULT1A3 | Protein | uniprot:P0DMM9 | |
SLC25A12 | Protein | uniprot:O75746 | |
MTRR | Protein | uniprot:Q9UBK8 | |
PNPO | Protein | uniprot:Q9NVS9 | |
SCN7A | Protein | uniprot:Q01118 | |
HISN8 | Protein | uniprot:Q9C5U8 | |
NADSYN1 | Protein | uniprot:Q6IA69 | |
MTHFD2L | Protein | uniprot:Q9H903 | |
RFK | Protein | uniprot:Q969G6 | |
DBH | Protein | uniprot:P09172 | |
GABRA1 | Protein | uniprot:P14867 | |
SCN8A | Protein | uniprot:Q9UQD0 | |
SLC19A1 | Protein | uniprot:P41440 | |
NOS1 | Protein | uniprot:P29475 | |
PNMT | Protein | uniprot:P11086 | |
GABRA4 | Protein | uniprot:P48169 | |
AKR1B1 | Protein | uniprot:P15121 | |
BHMT | Protein | uniprot:Q93088 | |
DHFR | Protein | uniprot:P00374 | |
GABRB1 | Protein | uniprot:P18505 | |
QPRT | Protein | uniprot:Q15274 | |
SOD2 | Protein | uniprot:P04179 | |
SCN2B | Protein | uniprot:O60939 | |
SCN9A | Protein | uniprot:Q15858 | |
GABRG1 | Protein | uniprot:Q8N1C3 | |
SLC6A4 | Protein | uniprot:P31645 | |
GABRG2 | Protein | uniprot:P18507 | |
ADGRL3GPCRs | Protein | uniprot:Q9HAR2 | |
GABRQ | Protein | uniprot:Q9UN88 | |
SCN3B | Protein | uniprot:Q9NY72 | |
NOX1 | Protein | uniprot:Q9Y5S8 | |
GABRB2 | Protein | uniprot:P47870 | |
SLC6A2 | Protein | uniprot:P23975 | The SLC6A2 gene encodes the norepinephrine transporter (NET), which plays a crucial role in the reuptake of norepinephrine (noradrenaline) from the synaptic cleft back into the presynaptic neuron. Here are the key functions and details about SLC6A2 and NET: Key Functions of NET (SLC6A2) Reuptake of Norepinephrine: Primary Function: NET is responsible for the high-affinity reuptake of norepinephrine from the synaptic cleft into the presynaptic neuron. This process is essential for terminating norepinephrine signaling and regulating its concentration in the synaptic cleft. Mechanism: NET transports norepinephrine along with sodium and chloride ions across the plasma membrane of the presynaptic neuron. Recycling of Norepinephrine: Recycling: Once inside the presynaptic neuron, norepinephrine can be repackaged into synaptic vesicles by vesicular monoamine transporters (such as VMAT2) for future release. Regulation of Noradrenergic Signaling: Signal Termination: By removing norepinephrine from the synaptic cleft, NET helps terminate the noradrenergic signal, thereby regulating the duration and intensity of norepinephrine's effects on postsynaptic receptors. Homeostasis: NET helps maintain the homeostasis of norepinephrine levels in the synaptic cleft and prevents overstimulation of noradrenergic receptors. Clinical Relevance Neuropsychiatric Disorders: Depression and Anxiety: Dysregulation of NET function is implicated in mood disorders such as depression and anxiety. Certain antidepressants, such as tricyclic antidepressants and selective norepinephrine reuptake inhibitors (NRIs), target NET to increase norepinephrine levels in the synaptic cleft. Attention-Deficit/Hyperactivity Disorder (ADHD): NET is also a target for medications used to treat ADHD, such as atomoxetine, which increases norepinephrine availability by inhibiting its reuptake. Cardiovascular Regulation: Blood Pressure and Heart Rate: NET also plays a role in the autonomic nervous system, influencing cardiovascular functions by regulating norepinephrine levels in sympathetic neurons. Expression and Localization Expression Sites: NET is primarily expressed in noradrenergic neurons in the central and peripheral nervous systems, including the locus coeruleus in the brain, which is a major site of norepinephrine production. Peripheral Role: In the peripheral nervous system, NET is found in sympathetic neurons, where it regulates norepinephrine levels involved in the fight-or-flight response. Summary SLC6A2 encodes the norepinephrine transporter (NET), which is essential for the reuptake and recycling of norepinephrine from the synaptic cleft back into presynaptic neurons. This transporter plays a critical role in terminating noradrenergic signaling, maintaining neurotransmitter homeostasis, and regulating various physiological and psychological processes. Dysregulation of NET is associated with several neuropsychiatric disorders, and it is a target for various pharmacological treatments. |
GCH1 | Protein | uniprot:P30793 | |
FOLR1 | Protein | uniprot:P15328 | |
MTHFD2 | Protein | uniprot:P13995 | |
SLC6A3 | Protein | uniprot:Q01959 | Sodium-dependent dopamine transporter, DA transporter, DAT, Solute carrier family 6 member 3. AKA DAT1 |
STXBP1 | Protein | uniprot:P61764 | |
QDPR | Protein | uniprot:P09417 | |
TAAR1 | Protein | uniprot:Q96RJ0 | |
TYMS | Protein | uniprot:P04818 | |
SCN1B | Protein | uniprot:Q07699 | |
NOX3 | Protein | uniprot:Q9HBY0 | |
DNMT1 | Protein | uniprot:P26358 | |
TCN2 | Protein | uniprot:P20062 | |
AGTR1 | Protein | uniprot:P30556 | |
NOS3 | Protein | uniprot:P29474 | |
SCN4A | Protein | uniprot:P35499 | |
MOCOS | Protein | uniprot:Q96EN8 | |
PAH | Protein | uniprot:P00439 | |
GABRD | Protein | uniprot:O14764 | |
AGMO | Protein | uniprot:Q6ZNB7 | |
ASMT | Protein | uniprot:P46597 | |
DDC | Protein | uniprot:P20711 | |
SOD1 | Protein | uniprot:P00441 | |
NCAM1 | Protein | uniprot:P13591 | |
RIT2 | Protein | uniprot:Q99578 | |
TPH2 | Protein | uniprot:Q8IWU9 | |
MTR | Protein | uniprot:Q99707 | |
MTHFR | Protein | uniprot:P42898 | |
NMNAT1 | Protein | uniprot:Q9HAN9 | |
SCN11A | Protein | uniprot:Q9UI33 | |
SLC25A13 | Protein | uniprot:Q9UJS0 | |
ALDH1L1 | Protein | uniprot:O75891 | |
SCN3A | Protein | uniprot:Q9NY46 | |
GPHN | Protein | uniprot:Q9NQX3 | |
NOX5 | Protein | uniprot:Q96PH1 | |
SLC17A7 | Protein | uniprot:Q9P2U8 | Multifunctional transporter that transports L-glutamate as well as multiple ions such as chloride, proton, potassium, sodium and phosphate (PubMed:10820226). At the synaptic vesicle membrane, mainly functions as an uniporter which transports preferentially L-glutamate but also phosphate from the cytoplasm into synaptic vesicles at presynaptic nerve terminals of excitatory neural cells (By similarity). |
KYAT3 | Protein | uniprot:Q6YP21 | |
ALDH1L2 | Protein | uniprot:Q3SY69 | |
GK | Protein | uniprot:P32189 | |
SYP | Protein | uniprot:P08247 | |
REN | Protein | uniprot:P00797 | |
CTH | Protein | uniprot:P32929 | |
AHCY | Protein | uniprot:P23526 | |
SPR | Protein | uniprot:P35270 | |
TPH1 | Protein | uniprot:P17752 | |
ADH | Protein | kegg.genes:EC 1.1.1.1 | |
MAT1A | Protein | uniprot:Q00266 | |
MAT2B | Protein | uniprot:Q9NZL9 | |
AKR1A1 | Protein | uniprot:P14550 | |
AKR1C3 | Protein | uniprot:P42330 | |
CBR1 | Protein | uniprot:P16152 | |
AKR1C1 | Protein | uniprot:Q04828 | |
SHMT1 | Protein | uniprot:P34896 | |
MTHFD1 | Protein | uniprot:P11586 | |
MTHFD1L | Protein | uniprot:Q6UB35 | |
NOS2 | Protein | uniprot:P35228 | |
DRD5 | Protein | uniprot:P21918 | |
HTR4 | Protein | uniprot:Q13639 | |
HTR6 | Protein | uniprot:P50406 | |
HTR1D | Protein | uniprot:P28221 | |
HTR1E | Protein | uniprot:P28566 | |
HTR7 | Protein | uniprot:P34969 | |
HTR2A | Protein | uniprot:P28223 | |
HTR1F | Protein | uniprot:P30939 | |
HTR5a | Protein | ncbigene:100038775 | |
HTR2B | Protein | uniprot:P41595 | |
HTR1A | Protein | ncbigene:100001828 | |
HTR1B | Protein | ncbigene:561647 | |
ADRA1A | Protein | uniprot:P35348 | |
COMT | Protein | uniprot:P21964 | AKA Catechol-O- metyltransferase |
SNAP25 | Protein | uniprot:P60880 | |
VAMP2 | Protein | uniprot:P63027 | |
SYT1 | Protein | uniprot:P21579 | |
STX1A | Protein | uniprot:Q16623 | |
GRM8 | Protein | uniprot:O00222 | |
KCNA2 | Protein | uniprot:P16389 | |
KCNA1 | Protein | uniprot:Q09470 | |
DLG3 | Protein | uniprot:Q92796 | |
GRM6 | Protein | uniprot:O15303 | |
GRM5 | Protein | uniprot:P41594 | |
GRM3 | Protein | uniprot:Q14832 | |
KCNA3 | Protein | uniprot:P22001 | |
GRIN2C | Protein | uniprot:Q14957 | |
DLG5 | Protein | uniprot:Q8TDM6 | |
GRM4 | Protein | uniprot:Q14833 | |
GRIN2B | Protein | uniprot:Q13224 | |
GRIA1 | Protein | uniprot:P42261 | |
GRIN1 | Protein | uniprot:Q05586 | |
GRM2 | Protein | uniprot:Q14416 | |
GRIN2A | Protein | uniprot:Q12879 | |
KCNA4 | Protein | uniprot:P22459 | |
KCNA5 | Protein | uniprot:P22460 | |
DLG2 | Protein | uniprot:Q15700 | |
KCNA6 | Protein | uniprot:P17658 | |
GRIA2 | Protein | uniprot:P42262 | |
GRM7 | Protein | uniprot:Q14831 | |
OXTR | Protein | uniprot:P30559 | |
MC4R | Protein | uniprot:P32245 | |
SHANK1 | Protein | uniprot:Q9Y566 | |
GRIA4 | Protein | uniprot:P48058 | |
NLGN1 | Protein | uniprot:Q8N2Q7 | |
NRXN2 | Protein | uniprot:P58401 | |
GRIN3B | Protein | uniprot:O60391 | |
ABL1 | Protein | uniprot:P00519 | |
HOMER2 | Protein | uniprot:Q9NSB8 | |
GRIN3A | Protein | uniprot:Q8TCU5 | |
DLG4 | Protein | uniprot:P78352 | |
NLGN2 | Protein | uniprot:Q8NFZ4 | |
KCNA7 | Protein | uniprot:Q96RP8 | |
CBL | Protein | uniprot:P22681 | |
SRBS2 | Protein | uniprot:O94875 | |
GRIN2D | Protein | uniprot:O15399 | |
NLGN4X | Protein | uniprot:Q8N0W4 | |
NRXN3 | Protein | uniprot:Q9HDB5 | |
APP | Protein | uniprot:P05067 | |
SHANK3 | Protein | uniprot:Q9BYB0 | |
GRIA3 | Protein | uniprot:P42263 | |
GRIP2 | Protein | uniprot:Q9C0E4 | |
HOMER3 | Protein | uniprot:Q9NSC5 | |
DLG1 | Protein | uniprot:Q12959 | |
NRXN1 | Protein | uniprot:Q9ULB1 | |
NLGN3 | Protein | uniprot:Q9NZ94 | |
PTK2B | Protein | uniprot:Q14289 | |
HOMER1 | Protein | uniprot:Q86YM7 | |
SHANK2 | Protein | uniprot:Q9UPX8 | |
GRM1 | Protein | uniprot:Q13255 | |
GRIP1 | Protein | uniprot:Q9Y3R0 | |
CACNG2 | Protein | uniprot:Q9Y698 | |
CTTN | Protein | uniprot:Q14247 | |
ABL2 | Protein | uniprot:P42684 | |
FOLR2 | Protein | uniprot:P14207 | |
HTR3A | Protein | uniprot:P40227 | |
HTR3B | Protein | uniprot:O95264 | |
HTR3C | Protein | uniprot:Q8WXA8 | |
HTR3D | Protein | uniprot:Q70Z44 | |
HTR3E | Protein | uniprot:A5X5Y0 | |
CACNG6 | Protein | uniprot:Q9BXT2 | |
CACNG7 | Protein | uniprot:P62955 | |
CACNG3 | Protein | uniprot:O60359 | |
CACNG4 | Protein | uniprot:Q9UBN1 | |
CACNG8 | Protein | uniprot:Q8WXS5 | |
CACNG5 | Protein | uniprot:Q9UF02 | |
CACNG1 | Protein | uniprot:Q06432 | |
GNAQ | Protein | uniprot:P50148 | |
OXT | Protein | uniprot:P01178 | |
CACNA1C | Protein | uniprot:Q13936 | |
SOD3 | Protein | uniprot:P08294 | |
IFNG | Protein | uniprot:P01579 | |
KYNU | Protein | uniprot:Q16719 | |
KAT1 | Protein | uniprot:Q16773 | |
KMO | Protein | uniprot:O15229 | |
IDO1 | Protein | uniprot:P14902 | |
IDO2 | Protein | uniprot:Q6ZQW0 | |
T23O | Protein | uniprot:P48775 | |
KAT3 | Protein | uniprot:Q6YP21 | |
AADAT | Protein | uniprot:Q8N5Z0 | |
AATM | Protein | uniprot:P00505 | |
TNFA | Protein | uniprot:P01375 | |
GABBR1 | Protein | uniprot:Q9UBS5 | |
SLC32A1 | Protein | uniprot:Q9H598 | Vesicular inhibitory amino acid transporter |
ALDH9A1 | Protein | uniprot:P49189 | 4-trimethylaminobutyraldehyde dehydrogenase |
ABAT | Protein | uniprot:P80404 | 4-Aminobutyrate aminotransferase |
GLS2 | Protein | uniprot:Q9UI32 | |
ABCD4 | Protein | uniprot:O14678 | cblJ |
MMUT | Protein | uniprot:P22033 | aka methylmalonyl-CoA mutase or MCM |
CD320 | Protein | uniprot:Q9NPF0 | Aka CD320 receptor |
cbLAMMAA | Protein | uniprot:Q8IVH4 | Gene: MMAA |
LMBRD1 | Protein | uniprot:Q9NUN5 | cblF |
MMACHC | Protein | uniprot:Q9Y4U1 | cbLC |
MMAB | Protein | uniprot:60488 | cblB |
MMADHC | Protein | uniprot:Q9H3L0 | 'cblD protein might be responsible for branching of the cobalamin metabolism pathways to the cytosolic or mitochondrial compartments' Pubmed: 21114891gene is called MMADHC |
NAPEPLD | Protein | uniprot:NAPEPLD | |
TSC1 | Protein | uniprot:Q92574 | |
TSC2 | Protein | uniprot:P49815 | |
PIK3R2 | Protein | uniprot:O00459 | |
PIK3CB | Protein | uniprot:P42338 | |
PIK3CA | Protein | uniprot:P42336 | |
PIK3R1 | Protein | uniprot:P27986 | |
PIK3CD | Protein | uniprot:O00329 | |
PIK3R3 | Protein | uniprot:Q92569 | |
PDGFRB | Protein | uniprot:P09619 | |
PRKCD | Protein | uniprot:Q05655 | |
PRKCZ | Protein | uniprot:Q05513 | |
PRKCA | Protein | uniprot:P17252 | |
PRKCB | Protein | uniprot:P05771 | |
PRKCG | Protein | uniprot:P05129 | |
MAPK3 | Protein | dbsnp:P27361 | |
MMACHC | Protein | uniprot:Q9Y4U1 | Gene is called MMAC |
MMAA | Protein | uniprot:Q8IVH4 | cbLA |
TCN2 | Protein | uniprot:P20062 | aka Transcobalamin 2 |
TCN1 | Protein | uniprot:P20061 | aka haptocorrin or transcobalamin 1Produced in saliva and stomach |
CUBN | Protein | uniprot:O60494 | aka cubilin |
TCN1 | Protein | uniprot:P20061 | aka haptocorrin or transcobalamin 1 |
CBLIF | Protein | uniprot:P27352 | aka (gastric) intrinsic factor, transcobalamin IIILocated in gastric parietal cells |
CBLIF | Protein | uniprot:P27352 | aka intrinsic factor |
AMN | Protein | uniprot:Q9BXJ7 | aka amnionless |
PDXK | Protein | uniprot:O00764 | |
ALPL | Protein | uniprot:P05186 | |
GNMT | Protein | uniprot:Q14749 | |
APRT | Protein | uniprot:P07741 | |
ATIC | Protein | uniprot:P31939 | |
ADA | Protein | uniprot:P00813 | aka Adenosine deaminase |
ADSS | Protein | uniprot:P30520 | Adenylosuccinate synthetase isozyme 2 |
ADSL | Protein | uniprot:P30566 | |
IMPDH1 | Protein | uniprot:P20839 | |
HPRT1 | Protein | uniprot:P00492 | |
DGUOK | Protein | uniprot:Q16854 | |
AMPD1 | Protein | uniprot:P23109 | |
ITPA | Protein | uniprot:Q9BY32 | |
RR | Protein | eccode:1.17.4.1 | ribonucleotide reductase |
PNP | Protein | uniprot:P00491 | |
XO | Protein | uniprot:P47989 | |
SLC25A40 | Protein | uniprot:Q8TBP6 | |
SLC18A1 | Protein | uniprot:P54219 | The SLC18A1 gene encodes the vesicular monoamine transporter 1 (VMAT1), which is primarily involved in the transport of specific monoamine neurotransmitters into synaptic vesicles. The types of neurotransmitters that use VMAT1 for vesicular transport include: Primary Neurotransmitters Transported by VMAT1 Serotonin (5-HT) Function: Serotonin is involved in regulating mood, appetite, sleep, and other functions. It plays a key role in the pathophysiology of depression and anxiety disorders. Transport: VMAT1 loads serotonin into synaptic vesicles in serotonergic neurons. Histamine Function: Histamine is involved in the regulation of sleep-wake cycles, immune responses, and gastric acid secretion. Transport: VMAT1 transports histamine into vesicles primarily in histaminergic neurons. Secondary Neurotransmitters Transported by VMAT1 (to a lesser extent) Dopamine Function: Dopamine is crucial for reward, motivation, motor control, and several other functions. Dysregulation is associated with Parkinson's disease, schizophrenia, and addiction. Transport: While VMAT1 can transport dopamine, it does so less efficiently compared to VMAT2. Dopaminergic neurons predominantly rely on VMAT2. Norepinephrine (Noradrenaline) Function: Norepinephrine is involved in attention, arousal, and the fight-or-flight response. Transport: Similar to dopamine, VMAT1 can transport norepinephrine but with lower efficiency compared to VMAT2. Noradrenergic neurons primarily use VMAT2. Summary VMAT1 (encoded by SLC18A1) primarily transports serotonin and histamine into synaptic vesicles, playing a key role in serotonergic and histaminergic neurotransmission. It also has the capacity to transport dopamine and norepinephrine, although these functions are predominantly handled by VMAT2 (encoded by SLC18A2) in dopaminergic and noradrenergic neurons, respectively. |
References
- Replication of a rare protective allele in the noradrenaline transporter gene and ADHD. Xu X, Hawi Z, Brookes KJ, Anney R, Bellgrove M, Franke B, et al. American J of Med Genetics Pt B [Internet]. 2008 Oct 20;147B(8):1564–7. Available from: http://dx.doi.org/10.1002/ajmg.b.30872 DOI Scholia
- The proteasome and its role in the degradation of oxidized proteins. Jung T, Grune T. IUBMB Life [Internet]. 2008 Nov;60(11):743–52. Available from: http://dx.doi.org/10.1002/iub.114 DOI Scholia
- Disorders affecting vitamin B6 metabolism. Wilson MP, Plecko B, Mills PB, Clayton PT. J of Inher Metab Disea [Internet]. 2019 Mar 20;42(4):629–46. Available from: http://dx.doi.org/10.1002/jimd.12060 DOI Scholia
- Genetic Factors Modulating the Response to Stimulant Drugs in Humans. Hart AB, de Wit H, Palmer AA. In: Current Topics in Behavioral Neurosciences [Internet]. Springer Berlin Heidelberg; 2011. p. 537–77. Available from: http://dx.doi.org/10.1007/7854_2011_187 DOI Scholia
- Further evidence of association between amphetamine response and SLC6A2 gene variants. Dlugos AM, Hamidovic A, Palmer AA, de Wit H. Psychopharmacology [Internet]. 2009 Sep 2;206(3):501–11. Available from: http://dx.doi.org/10.1007/s00213-009-1628-y DOI Scholia
- Negative emotionality: monoamine oxidase B gene variants modulate personality traits in healthy humans. Dlugos AM, Palmer AA, de Wit H. J Neural Transm [Internet]. 2009 Aug 6;116(10):1323–34. Available from: http://dx.doi.org/10.1007/s00702-009-0281-2 DOI Scholia
- Analysis of neurotransmitters validates the importance of the dopaminergic system in autism spectrum disorder. Saha S, Chatterjee M, Dutta N, Sinha S, Mukhopadhyay K. World J Pediatr [Internet]. 2023 Feb 27;19(8):770–81. Available from: http://dx.doi.org/10.1007/s12519-023-00702-0 DOI Scholia
- Sapropterin (BH4) Aggravates Autoimmune Encephalomyelitis in Mice. Schmitz K, Trautmann S, Hahnefeld L, Fischer C, Schreiber Y, Wilken-Schmitz A, et al. Neurotherapeutics [Internet]. 2021 Apr 12;18(3):1862–79. Available from: http://dx.doi.org/10.1007/s13311-021-01043-4 DOI Scholia
- Combined Immune Deficiencies. Su HC, Lenardo MJ. In: Stiehm’s Immune Deficiencies [Internet]. Elsevier; 2014. p. 143–69. Available from: http://dx.doi.org/10.1016/B978-0-12-405546-9.00005-4 DOI Scholia
- TP53. McDade SS, Fischer M. In: Reference Module in Biomedical Sciences [Internet]. Elsevier; 2018. Available from: http://dx.doi.org/10.1016/B978-0-12-801238-3.64985-1 DOI Scholia
- Methionine synthase and methionine synthase reductase interact with MMACHC and with MMADHC. Bassila C, Ghemrawi R, Flayac J, Froese DS, Baumgartner MR, Guéant JL, et al. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease [Internet]. 2017 Jan;1863(1):103–12. Available from: http://dx.doi.org/10.1016/j.bbadis.2016.10.016 DOI Scholia
- Autism spectrum disorder (ASD): Disturbance of the melatonin system and its implications. Wu Z yue, Huang S dai, Zou J jun, Wang Q xin, Naveed M, Bao H nan, et al. Biomedicine & Pharmacotherapy [Internet]. 2020 Oct;130:110496. Available from: http://dx.doi.org/10.1016/j.biopha.2020.110496 DOI Scholia
- Neural Mechanisms of Attention-Deficit/Hyperactivity Disorder Symptoms Are Stratified by MAOA Genotype. Nymberg C, Jia T, Lubbe S, Ruggeri B, Desrivieres S, Barker G, et al. Biological Psychiatry [Internet]. 2013 Oct;74(8):607–14. Available from: http://dx.doi.org/10.1016/j.biopsych.2013.03.027 DOI Scholia
- SnapShot: Neuroligin-Neurexin Complexes. Baudouin S, Scheiffele P. Cell [Internet]. 2010 May;141(5):908-908.e1. Available from: http://dx.doi.org/10.1016/j.cell.2010.05.024 DOI Scholia
- Shared and unique genetic contributions to attention deficit/hyperactivity disorder and substance use disorders: A pilot study of six candidate genes. Carpentier PJ, Arias Vasquez A, Hoogman M, Onnink M, Kan CC, Kooij JJS, et al. European Neuropsychopharmacology [Internet]. 2013 Jun;23(6):448–57. Available from: http://dx.doi.org/10.1016/j.euroneuro.2012.07.003 DOI Scholia
- Association study of the vesicular monoamine transporter 1 ( VMAT1 ) gene with autism in an Iranian population. Noroozi R, Ghafouri-Fard S, Omrani MD, Habibi M, Sayad A, Taheri M. Gene [Internet]. 2017 Aug;625:10–4. Available from: http://dx.doi.org/10.1016/j.gene.2017.05.003 DOI Scholia
- Metabolic intermediates – Cellular messengers talking to chromatin modifiers. Nieborak A, Schneider R. Molecular Metabolism [Internet]. 2018 Aug;14:39–52. Available from: http://dx.doi.org/10.1016/j.molmet.2018.01.007 DOI Scholia
- Brain imaging genetics in ADHD and beyond – Mapping pathways from gene to disorder at different levels of complexity. Klein M, Onnink M, van Donkelaar M, Wolfers T, Harich B, Shi Y, et al. Neuroscience & Biobehavioral Reviews [Internet]. 2017 Sep;80:115–55. Available from: http://dx.doi.org/10.1016/j.neubiorev.2017.01.013 DOI Scholia
- Family- and population-based association studies of monoamine oxidase A and autism spectrum disorders in Korean. Yoo HJ, Lee SK, Park M, Cho IH, Hyun SH, Lee JC, et al. Neuroscience Research [Internet]. 2009 Mar;63(3):172–6. Available from: http://dx.doi.org/10.1016/j.neures.2008.11.007 DOI Scholia
- Shank postsynaptic scaffolding proteins in autism spectrum disorder: Mouse models and their dysfunctions in behaviors, synapses, and molecules. Jung S, Park M. Pharmacological Research [Internet]. 2022 Aug;182:106340. Available from: http://dx.doi.org/10.1016/j.phrs.2022.106340 DOI Scholia
- Dual-specificity phosphatases in mental and neurological disorders. An N, Bassil K, Al Jowf GI, Steinbusch HWM, Rothermel M, de Nijs L, et al. Progress in Neurobiology [Internet]. 2021 Mar;198:101906. Available from: http://dx.doi.org/10.1016/j.pneurobio.2020.101906 DOI Scholia
- Association analysis of norepinephrine transporter polymorphisms and methylphenidate response in ADHD patients. Angyal N, Horvath EZ, Tarnok Z, Richman MJ, Bognar E, Lakatos K, et al. Progress in Neuro-Psychopharmacology and Biological Psychiatry [Internet]. 2018 Jun;84:122–8. Available from: http://dx.doi.org/10.1016/j.pnpbp.2018.01.013 DOI Scholia
- Genetic variants of the folate metabolic system and mild hyperhomocysteinemia may affect ADHD associated behavioral problems. Saha T, Chatterjee M, Verma D, Ray A, Sinha S, Rajamma U, et al. Progress in Neuro-Psychopharmacology and Biological Psychiatry [Internet]. 2018 Jun;84:1–10. Available from: http://dx.doi.org/10.1016/j.pnpbp.2018.01.016 DOI Scholia
- Do SNPs of DRD4 gene predict adult persistence of ADHD in a Chinese sample? Li Y, Baker-Ericzen M, Ji N, Chang W, Guan L, Qian Q, et al. Psychiatry Research [Internet]. 2013 Jan;205(1–2):143–50. Available from: http://dx.doi.org/10.1016/j.psychres.2012.08.016 DOI Scholia
- Modification of the association between early adversity and obsessive-compulsive disorder by polymorphisms in the MAOA, MAOB and COMT genes. McGregor NW, Hemmings SMJ, Erdman L, Calmarza-Font I, Stein DJ, Lochner C. Psychiatry Research [Internet]. 2016 Dec;246:527–32. Available from: http://dx.doi.org/10.1016/j.psychres.2016.10.044 DOI Scholia
- Contribution of Clinical Neuroimaging to the Understanding of the Pharmacology of Methylphenidate. Zimmer L. Trends in Pharmacological Sciences [Internet]. 2017 Jul;38(7):608–20. Available from: http://dx.doi.org/10.1016/j.tips.2017.04.001 DOI Scholia
- Tetrahydrobiopterin is synthesized from 6-pyruvoyl-tetrahydropterin by the human aldo-keto reductase AKR1 family members. Iino T, Tabata M, Takikawa SI, Sawada H, Shintaku H, Ishikura S, et al. Archives of Biochemistry and Biophysics [Internet]. 2003 Aug;416(2):180–7. Available from: http://dx.doi.org/10.1016/S0003-9861(03)00295-9 DOI Scholia
- Histamine. Al-Badr AA, El-Subbagh HI. In: Analytical Profiles of Drug Substances and Excipients [Internet]. Elsevier; 2001. p. 159–264. Available from: http://dx.doi.org/10.1016/S1075-6280(01)27007-4 DOI Scholia
- 3-Hydroxykynurenine and 3-Hydroxyanthranilic Acid Generate Hydrogen Peroxide and Promote α-Crystallin Cross-Linking by Metal Ion Reduction. Goldstein LE, Leopold MC, Huang X, Atwood CS, Saunders AJ, Hartshorn M, et al. Biochemistry [Internet]. 2000 May 26;39(24):7266–75. Available from: http://dx.doi.org/10.1021/BI992997S DOI Scholia
- Alpha-2A adrenergic receptor gene variants are associated with increased intra-individual variability in response time. Cummins TDR, Jacoby O, Hawi Z, Nandam LS, Byrne MAV, Kim BN, et al. Mol Psychiatry [Internet]. 2013 Oct 29;19(9):1031–6. Available from: http://dx.doi.org/10.1038/mp.2013.140 DOI Scholia
- Mechanisms of ketamine action as an antidepressant. Zanos P, Gould TD. Mol Psychiatry [Internet]. 2018 Mar 13;23(4):801–11. Available from: http://dx.doi.org/10.1038/mp.2017.255 DOI Scholia
- SHANK3 overexpression causes manic-like behaviour with unique pharmacogenetic properties. Han K, Holder Jr JL, Schaaf CP, Lu H, Chen H, Kang H, et al. Nature [Internet]. 2013 Oct 23;503(7474):72–7. Available from: http://dx.doi.org/10.1038/nature12630 DOI Scholia
- Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Jamain S, Quach H, Betancur C, Råstam M, Colineaux C, Gillberg IC, et al. Nat Genet [Internet]. 2003 Mar 31;34(1):27–9. Available from: http://dx.doi.org/10.1038/ng1136 DOI Scholia
- Meta-analysis of 2,104 trios provides support for 10 new genes for intellectual disability. Lelieveld SH, Reijnders MRF, Pfundt R, Yntema HG, Kamsteeg EJ, de Vries P, et al. Nat Neurosci [Internet]. 2016 Aug 1;19(9):1194–6. Available from: http://dx.doi.org/10.1038/nn.4352 DOI Scholia
- nArgBP2-SAPAP-SHANK, the core postsynaptic triad associated with psychiatric disorders. Lee SE, Kim JA, Chang S. Exp Mol Med [Internet]. 2018 Apr;50(4):1–9. Available from: http://dx.doi.org/10.1038/s12276-017-0018-5 DOI Scholia
- Signalling pathways in autism spectrum disorder: mechanisms and therapeutic implications. Jiang CC, Lin LS, Long S, Ke XY, Fukunaga K, Lu YM, et al. Sig Transduct Target Ther [Internet]. 2022 Jul 11;7(1). Available from: http://dx.doi.org/10.1038/s41392-022-01081-0 DOI Scholia
- Neurobehavioral phenotype of autism spectrum disorder associated with germline heterozygous mutations in PTEN. Busch RM, Srivastava S, Hogue O, Frazier TW, Klaas P, Hardan A, et al. Transl Psychiatry [Internet]. 2019 Oct 8;9(1). Available from: http://dx.doi.org/10.1038/s41398-019-0588-1 DOI Scholia
- DRD4 48 bp multiallelic variants as age-population-specific biomarkers in attention-deficit/hyperactivity disorder. Bonvicini C, Cortese S, Maj C, Baune BT, Faraone SV, Scassellati C. Transl Psychiatry [Internet]. 2020 Feb 19;10(1). Available from: http://dx.doi.org/10.1038/s41398-020-0755-4 DOI Scholia
- Association between gene promoter methylation of the one-carbon metabolism pathway and serum folate among patients with hyperhomocysteinemia. Huang X, Zhao Q, Li D, Ren B, Yue L, Shi F, et al. Eur J Clin Nutr [Internet]. 2020 May 13;74(12):1677–84. Available from: http://dx.doi.org/10.1038/s41430-020-0657-9 DOI Scholia
- Association of polymorphisms of FOLR1 gene and FOLR2 gene and maternal folic acid supplementation with risk of ventricular septal defect: a case-control study. Song X, Wei J, Shu J, Liu Y, Sun M, Zhu P, et al. Eur J Clin Nutr [Internet]. 2022 Mar 10;76(9):1273–80. Available from: http://dx.doi.org/10.1038/s41430-022-01110-9 DOI Scholia
- Dynamic control of the dopamine transporter in neurotransmission and homeostasis. Bu M, Farrer MJ, Khoshbouei H. npj Parkinsons Dis [Internet]. 2021 Mar 5;7(1). Available from: http://dx.doi.org/10.1038/s41531-021-00161-2 DOI Scholia
- Depression and Catechol-O-methyltransferase (COMT) genetic variants are associated with pain in Parkinson’s disease. Lin CH, Chaudhuri KR, Fan JY, Ko CI, Rizos A, Chang CW, et al. Sci Rep [Internet]. 2017 Jul 24;7(1). Available from: http://dx.doi.org/10.1038/s41598-017-06782-z DOI Scholia
- Phenethylamine is a substrate of monoamine oxidase B in the paraventricular thalamic nucleus. Obata Y, Kubota-Sakashita M, Kasahara T, Mizuno M, Nemoto T, Kato T. Sci Rep [Internet]. 2022 Jan 7;12(1). Available from: http://dx.doi.org/10.1038/s41598-021-03885-6 DOI Scholia
- Abnormal melatonin synthesis in autism spectrum disorders. Melke J, Goubran Botros H, Chaste P, Betancur C, Nygren G, Anckarsäter H, et al. Mol Psychiatry [Internet]. 2007 May 15;13(1):90–8. Available from: http://dx.doi.org/10.1038/sj.mp.4002016 DOI Scholia
- Further evidence of association between two NET single-nucleotide polymorphisms with ADHD. Kim JW, Biederman J, McGrath CL, Doyle AE, Mick E, Fagerness J, et al. Mol Psychiatry [Internet]. 2007 Sep 18;13(6):624–30. Available from: http://dx.doi.org/10.1038/sj.mp.4002090 DOI Scholia
- Working memory brain activity and capacity link MAOA polymorphism to aggressive behavior during development. Ziermans T, Dumontheil I, Roggeman C, Peyrard-Janvid M, Matsson H, Kere J, et al. Transl Psychiatry [Internet]. 2012 Feb 28;2(2):e85–e85. Available from: http://dx.doi.org/10.1038/tp.2012.7 DOI Scholia
- The effect of hydroxytyrosol and its nitroderivatives on catechol-O-methyl transferase activity in rat striatal tissue. Gallardo E, Madrona A, Palma-Valdés R, Trujillo M, Espartero JL, Santiago M. RSC Adv [Internet]. 2014;4(105):61086–91. Available from: http://dx.doi.org/10.1039/C4RA09872B DOI Scholia
- Identification of the gene encoding alkylglycerol monooxygenase defines a third class of tetrahydrobiopterin-dependent enzymes. Watschinger K, Keller MA, Golderer G, Hermann M, Maglione M, Sarg B, et al. Proc Natl Acad Sci USA [Internet]. 2010 Jul 19;107(31):13672–7. Available from: http://dx.doi.org/10.1073/pnas.1002404107 DOI Scholia
- Autistic traits and components of the folate metabolic system: an explorative analysis in the eastern Indian ASD subjects. Saha S, Saha T, Sinha S, Rajamma U, Mukhopadhyay K. Nutritional Neuroscience [Internet]. 2019 Jan 24;23(11):860–7. Available from: http://dx.doi.org/10.1080/1028415X.2019.1570442 DOI Scholia
- Genetic biomarkers predict susceptibility to autism spectrum disorder through interactive models of inheritance in a Saudi community. Elhawary NA, Tayeb MT, Sindi IA, Qutub N, Rashad M, Mufti A, et al. Bahler J, editor. Cogent Biology [Internet]. 2019 Jan 1;5(1):1606555. Available from: http://dx.doi.org/10.1080/23312025.2019.1606555 DOI Scholia
- Toward a better understanding of folate metabolism in health and disease. Zheng Y, Cantley LC. Journal of Experimental Medicine [Internet]. 2018 Dec 26;216(2):253–66. Available from: http://dx.doi.org/10.1084/jem.20181965 DOI Scholia
- Association Between Monoamine Oxidase Gene Polymorphisms and Attention Deficit Hyperactivity Disorder in Korean Children. Kwon HJ, Jin HJ, Lim MH. Genetic Testing and Molecular Biomarkers [Internet]. 2014 Jul;18(7):505–9. Available from: http://dx.doi.org/10.1089/gtmb.2014.0066 DOI Scholia
- A Functional Vesicular Monoamine Transporter 1 (VMAT1) Gene Variant Is Associated with Affect and the Prevalence of Anxiety, Affective, and Alcohol Use Disorders in a Longitudinal Population-Representative Birth Cohort Study. Vaht M, Kiive E, Veidebaum T, Harro J. IJNPPY [Internet]. 2016 Feb 9;19(7):pyw013. Available from: http://dx.doi.org/10.1093/ijnp/pyw013 DOI Scholia
- Genetic variants, neurocognitive outcomes, and functional neuroimaging in survivors of childhood acute lymphoblastic leukemia. Gandy K, Sapkota Y, Scoggins MA, Jacola LM, Koscik TR, Hudson MM, et al. JNCI Cancer Spectrum [Internet]. 2023 Jun 7;7(4). Available from: http://dx.doi.org/10.1093/jncics/pkad039 DOI Scholia
- Rhea, the reaction knowledgebase in 2022. Bansal P, Morgat A, Axelsen KB, Muthukrishnan V, Coudert E, Aimo L, et al. Nucleic Acids Research [Internet]. 2021 Nov 10;50(D1):D693–700. Available from: http://dx.doi.org/10.1093/nar/gkab1016 DOI Scholia
- ADHD and the DRD4 exon III 7-repeat polymorphism: an international meta-analysis. Nikolaidis A, Gray JR. Social Cognitive and Affective Neuroscience [Internet]. 2009 Dec 17;5(2–3):188–93. Available from: http://dx.doi.org/10.1093/scan/nsp049 DOI Scholia
- Noradrenergic genes polymorphisms and response to methylphenidate in children with ADHD. Yuan D, Zhang M, Huang Y, Wang X, Jiao J, Huang Y. Medicine [Internet]. 2021 Nov 19;100(46):e27858. Available from: http://dx.doi.org/10.1097/MD.0000000000027858 DOI Scholia
- Association between ASMT and autistic-like traits in children from a Swedish nationwide cohort. Jonsson L, Anckarsäter H, Zettergren A, Westberg L, Walum H, Lundström S, et al. Psychiatric Genetics [Internet]. 2014 Feb;24(1):21–7. Available from: http://dx.doi.org/10.1097/YPG.0000000000000010 DOI Scholia
- PTEN in Autism and Neurodevelopmental Disorders. Rademacher S, Eickholt BJ. Cold Spring Harb Perspect Med [Internet]. 2019 Aug 19;9(11):a036780. Available from: http://dx.doi.org/10.1101/cshperspect.a036780 DOI Scholia
- Truncating variants of the DLG4 gene are responsible for intellectual disability with marfanoid features. Moutton S, Bruel A ‐L., Assoum M, Chevarin M, Sarrazin E, Goizet C, et al. Clinical Genetics [Internet]. 2018 Apr 14;93(6):1172–8. Available from: http://dx.doi.org/10.1111/cge.13243 DOI Scholia
- Genetic variations of the melatonin pathway in patients with attention-deficit and hyperactivity disorders. Chaste P, Clement N, Botros HG, Guillaume JL, Konyukh M, Pagan C, et al. Journal of Pineal Research [Internet]. 2011 May 26;51(4):394–9. Available from: http://dx.doi.org/10.1111/j.1600-079X.2011.00902.x DOI Scholia
- Multivariate permutation analysis associates multiple polymorphisms with subphenotypes of major depression. Hahn MK, Blackford JU, Haman K, Mazei‐Robison M, English BA, Prasad HC, et al. Genes Brain and Behavior [Internet]. 2007 Dec 7;7(4):487–95. Available from: http://dx.doi.org/10.1111/j.1601-183X.2007.00384.x DOI Scholia
- Genetics and epigenetics of autism: A Review. Waye MMY, Cheng HY. Psychiatry Clin Neurosci [Internet]. 2017 Nov 13;72(4):228–44. Available from: http://dx.doi.org/10.1111/pcn.12606 DOI Scholia
- The Endocannabinoid Noladin Ether Acts as a Full Agonist at Human CB2 Cannabinoid Receptors. Shoemaker JL, Joseph BK, Ruckle MB, Mayeux PR, Prather PL. J Pharmacol Exp Ther [Internet]. 2005 May 18;314(2):868–75. Available from: http://dx.doi.org/10.1124/jpet.105.085282 DOI Scholia
- Genetic basis of pain variability: recent advances. Young EE, Lariviere WR, Belfer I. J Med Genet [Internet]. 2011 Nov 5;49(1):1–9. Available from: http://dx.doi.org/10.1136/jmedgenet-2011-100386 DOI Scholia
- 5-Methyltetrahydrofolate Administration Is Associated with Prolonged Survival and Reduced Inflammation in ESRD Patients. Cianciolo G, La Manna G, Colì L, Donati G, D’Addio F, Persici E, et al. Am J Nephrol [Internet]. 2008;28(6):941–8. Available from: http://dx.doi.org/10.1159/000142363 DOI Scholia
- Tetrahydrobiopterin and Cardiovascular Disease. Moens AL, Kass DA. ATVB [Internet]. 2006 Nov;26(11):2439–44. Available from: http://dx.doi.org/10.1161/01.ATV.0000243924.00970.cb DOI Scholia
- Are ACE Inhibitors a “Magic Bullet” Against Oxidative Stress? Münzel T, Keaney JF Jr. Circulation [Internet]. 2001 Sep 25;104(13):1571–4. Available from: http://dx.doi.org/10.1161/hc3801.095585 DOI Scholia
- PTEN-opathies: from biological insights to evidence-based precision medicine. Yehia L, Ngeow J, Eng C. Journal of Clinical Investigation [Internet]. 2019 Jan 7;129(2):452–64. Available from: http://dx.doi.org/10.1172/JCI121277 DOI Scholia
- Linkage and Association of the Mitochondrial Aspartate/Glutamate Carrier SLC25A12 Gene With Autism. Ramoz N, Reichert JG, Smith CJ, Silverman JM, Bespalova IN, Davis KL, et al. AJP [Internet]. 2004 Apr;161(4):662–9. Available from: http://dx.doi.org/10.1176/appi.ajp.161.4.662 DOI Scholia
- Beta-adrenergic antagonism alters functional connectivity during associative processing in a preliminary study of individuals with and without autism. Hegarty JP II, Zamzow RM, Ferguson BJ, Christ SE, Porges EC, Johnson JD, et al. Autism [Internet]. 2019 Aug 15;24(3):795–801. Available from: http://dx.doi.org/10.1177/1362361319868633 DOI Scholia
- A protein interaction based model for schizophrenia study. Hsu PC, Yang UC, Shih KH, Liu CM, Liu YL, Hwu HG. BMC Bioinformatics [Internet]. 2008 Dec;9(S12). Available from: http://dx.doi.org/10.1186/1471-2105-9-S12-S23 DOI Scholia
- The influence of serotonin- and other genes on impulsive behavioral aggression and cognitive impulsivity in children with attention-deficit/hyperactivity disorder (ADHD): Findings from a family-based association test (FBAT) analysis. Oades RD, Lasky-Su J, Christiansen H, Faraone SV, Sonuga-Barke EJS, Banaschewski T, et al. Behavioral and Brain Functions [Internet]. 2008;4(1):48. Available from: http://dx.doi.org/10.1186/1744-9081-4-48 DOI Scholia
- A quantitative association study of SLC25A12 and restricted repetitive behavior traits in autism spectrum disorders. Kim SJ, Silva RM, Flores CG, Jacob S, Guter S, Valcante G, et al. Molecular Autism [Internet]. 2011;2(1):8. Available from: http://dx.doi.org/10.1186/2040-2392-2-8 DOI Scholia
- A review of the evidence for the canonical Wnt pathway in autism spectrum disorders. Kalkman H. Molecular Autism [Internet]. 2012;3(1):10. Available from: http://dx.doi.org/10.1186/2040-2392-3-10 DOI Scholia
- Serum concentrations of kynurenines in adult patients with attention-deficit hyperactivity disorder (ADHD): a case–control study. Aarsland TIM, Landaas ET, Hegvik TA, Ulvik A, Halmøy A, Ueland PM, et al. Behav Brain Funct [Internet]. 2015 Nov 5;11(1). Available from: http://dx.doi.org/10.1186/s12993-015-0080-x DOI Scholia
- Genetic and molecular biology of autism spectrum disorder among Middle East population: a review. Rahmani Z, Fayyazi Bordbar MR, Dibaj M, Alimardani M, Moghbeli M. Hum Genomics [Internet]. 2021 Mar 12;15(1). Available from: http://dx.doi.org/10.1186/s40246-021-00319-2 DOI Scholia
- Folate Metabolism Gene 5,10-Methylenetetrahydrofolate Reductase (MTHFR) Is Associated with ADHD in Myelomeningocele Patients. Spellicy CJ, Northrup H, Fletcher JM, Cirino PT, Dennis M, Morrison AC, et al. Yao YG, editor. PLoS ONE [Internet]. 2012 Dec 5;7(12):e51330. Available from: http://dx.doi.org/10.1371/journal.pone.0051330 DOI Scholia
- Sequencing ASMT Identifies Rare Mutations in Chinese Han Patients with Autism. Wang L, Li J, Ruan Y, Lu T, Liu C, Jia M, et al. Zwick ME, editor. PLoS ONE [Internet]. 2013 Jan 17;8(1):e53727. Available from: http://dx.doi.org/10.1371/journal.pone.0053727 DOI Scholia
- DRD4 Rare Variants in Attention-Deficit/Hyperactivity Disorder (ADHD): Further Evidence from a Birth Cohort Study. Tovo-Rodrigues L, Rohde LA, Menezes AMB, Polanczyk GV, Kieling C, Genro JP, et al. Vaidya C, editor. PLoS ONE [Internet]. 2013 Dec 31;8(12):e85164. Available from: http://dx.doi.org/10.1371/journal.pone.0085164 DOI Scholia
- Genetic defects in folate and cobalamin pathways affecting the brain. Kirsch SH, Herrmann W, Obeid R. Clinical Chemistry and Laboratory Medicine (CCLM) [Internet]. 2012 Nov 20;51(1):139–55. Available from: http://dx.doi.org/10.1515/cclm-2012-0673 DOI Scholia
- Arginine-guanidinoacetate-creatine pathway in preterm newborns: creatine biosynthesis in newborns. Lage S, Andrade F, Prieto JA, Asla I, Rodríguez A, Ruiz N, et al. Journal of Pediatric Endocrinology and Metabolism [Internet]. 2013 Jan 1;26(1–2). Available from: http://dx.doi.org/10.1515/jpem-2012-0293 DOI Scholia
- Three Main Causes of Homocystinuria: CBS, cblC and MTHFR Deficiency. What do they Have in Common? Hoss GRW, Poloni S, Blom HJ, Schwartz IVD. J inborn errors metab screen [Internet]. 2019;7. Available from: http://dx.doi.org/10.1590/2326-4594-jiems-2019-0007 DOI Scholia
- Potential involvement of NET polymorphism in serotonin/norepinephrine reuptake inhibitor response in panic disorder. Park HJ, Kim SK, Kang WS, Kim YJ, Cho AR, Park JK. Nordic Journal of Psychiatry [Internet]. 2015 Oct 27;70(4):314–7. Available from: http://dx.doi.org/10.3109/08039488.2015.1089321 DOI Scholia
- Melatonin Synthesis and Function: Evolutionary History in Animals and Plants. Zhao D, Yu Y, Shen Y, Liu Q, Zhao Z, Sharma R, et al. Front Endocrinol [Internet]. 2019 Apr 17;10. Available from: http://dx.doi.org/10.3389/fendo.2019.00249 DOI Scholia
- MECP2 Mutation Interrupts Nucleolin–mTOR–P70S6K Signaling in Rett Syndrome Patients. Olson CO, Pejhan S, Kroft D, Sheikholeslami K, Fuss D, Buist M, et al. Front Genet [Internet]. 2018 Dec 19;9. Available from: http://dx.doi.org/10.3389/fgene.2018.00635 DOI Scholia
- Microbial Metabolic Capacity for Intestinal Folate Production and Modulation of Host Folate Receptors. Engevik MA, Morra CN, Röth D, Engevik K, Spinler JK, Devaraj S, et al. Front Microbiol [Internet]. 2019 Oct 9;10. Available from: http://dx.doi.org/10.3389/fmicb.2019.02305 DOI Scholia
- The Role of Collybistin in Gephyrin Clustering at Inhibitory Synapses: Facts and Open Questions. Papadopoulos T, Soykan T. Front Cell Neurosci [Internet]. 2011;5. Available from: http://dx.doi.org/10.3389/fncel.2011.00011 DOI Scholia
- Genetic Polymorphisms in Enzymes Involved in One-Carbon Metabolism and Anti-epileptic Drug Monotherapy on Homocysteine Metabolism in Patients With Epilepsy. Zhu S, Ni G, Sui L, Zhao Y, Zhang X, Dai Q, et al. Front Neurol [Internet]. 2021 Jun 9;12. Available from: http://dx.doi.org/10.3389/fneur.2021.683275 DOI Scholia
- Opioid Receptor-Mediated Regulation of Neurotransmission in the Brain. Reeves KC, Shah N, Muñoz B, Atwood BK. Front Mol Neurosci [Internet]. 2022 Jun 15;15. Available from: http://dx.doi.org/10.3389/fnmol.2022.919773 DOI Scholia
- Autism Spectrum Disorder Genes: Disease-Related Networks and Compensatory Strategies. Lim HK, Yoon JH, Song M. Front Mol Neurosci [Internet]. 2022 Jun 3;15. Available from: http://dx.doi.org/10.3389/fnmol.2022.922840 DOI Scholia
- TAAR1 in Addiction: Looking Beyond the Tip of the Iceberg. Liu JF, Li JX. Front Pharmacol [Internet]. 2018 Mar 27;9. Available from: http://dx.doi.org/10.3389/fphar.2018.00279 DOI Scholia
- Quinolinic Acid and Nuclear Factor Erythroid 2-Related Factor 2 in Depression: Role in Neuroprogression. Bansal Y, Singh R, Parhar I, Kuhad A, Soga T. Front Pharmacol [Internet]. 2019 May 21;10. Available from: http://dx.doi.org/10.3389/fphar.2019.00452 DOI Scholia
- Uncovering the Underlying Mechanisms of Ketamine as a Novel Antidepressant. Xu S, Yao X, Li B, Cui R, Zhu C, Wang Y, et al. Front Pharmacol [Internet]. 2022 Jul 7;12. Available from: http://dx.doi.org/10.3389/fphar.2021.740996 DOI Scholia
- Vitamin B12 (Cobalamin) and Micronutrient Fortification in Food Crops Using Nanoparticle Technology. Oh S, Cave G, Lu C. Front Plant Sci [Internet]. 2021 Aug 23;12. Available from: http://dx.doi.org/10.3389/fpls.2021.668819 DOI Scholia
- The Mechanism, Clinical Efficacy, Safety, and Dosage Regimen of Atomoxetine for ADHD Therapy in Children: A Narrative Review. Fu D, Wu DD, Guo HL, Hu YH, Xia Y, Ji X, et al. Front Psychiatry [Internet]. 2022 Feb 9;12. Available from: http://dx.doi.org/10.3389/fpsyt.2021.780921 DOI Scholia
- Novel Probable Glance at Inflammatory Scenario Development in Autistic Pathology. Harutyunyan AA, Harutyunyan HA, Yenkoyan KB. Front Psychiatry [Internet]. 2021 Dec 22;12. Available from: http://dx.doi.org/10.3389/fpsyt.2021.788779 DOI Scholia
- Genetic Pathways Associated With Sleep Problems in Children With Autism Spectrum Disorder. Lin PI, Masi A, Moni MA, Kummerfeld S, Eapen V. Front Psychiatry [Internet]. 2022 Jul 8;13. Available from: http://dx.doi.org/10.3389/fpsyt.2022.904091 DOI Scholia
- Tetrahydrobiopterin: Beyond Its Traditional Role as a Cofactor. Eichwald T, da Silva L de B da, Staats Pires ACS, Niero L, Schnorrenberger E, Filho CC, et al. Antioxidants [Internet]. 2023 May 3;12(5):1037. Available from: http://dx.doi.org/10.3390/antiox12051037 DOI Scholia
- AGMO Inhibitor Reduces 3T3-L1 Adipogenesis. Fischer C, Wilken-Schmitz A, Hernandez-Olmos V, Proschak E, Stark H, Fleming I, et al. Cells [Internet]. 2021 May 1;10(5):1081. Available from: http://dx.doi.org/10.3390/cells10051081 DOI Scholia
- SAPAP Scaffold Proteins: From Synaptic Function to Neuropsychiatric Disorders. Bai Y, Wang H, Li C. Cells [Internet]. 2022 Nov 28;11(23):3815. Available from: http://dx.doi.org/10.3390/cells11233815 DOI Scholia
- Maternal Inflammation with Elevated Kynurenine Metabolites Is Related to the Risk of Abnormal Brain Development and Behavioral Changes in Autism Spectrum Disorder. Murakami Y, Imamura Y, Kasahara Y, Yoshida C, Momono Y, Fang K, et al. Cells [Internet]. 2023 Apr 4;12(7):1087. Available from: http://dx.doi.org/10.3390/cells12071087 DOI Scholia
- A Pilot Feasibility Study Assessing the Combined Effects of Early Behavioral Intervention and Propranolol on Autism Spectrum Disorder (ASD). Hirst K, Zamzow RM, Stichter JP, Beversdorf DQ. Children [Internet]. 2023 Sep 30;10(10):1639. Available from: http://dx.doi.org/10.3390/children10101639 DOI Scholia
- Genetics and Epigenetics of One-Carbon Metabolism Pathway in Autism Spectrum Disorder: A Sex-Specific Brain Epigenome? Tisato V, Silva JA, Longo G, Gallo I, Singh AV, Milani D, et al. Genes [Internet]. 2021 May 20;12(5):782. Available from: http://dx.doi.org/10.3390/genes12050782 DOI Scholia
- Common and Unique Genetic Background between Attention-Deficit/Hyperactivity Disorder and Excessive Body Weight. Dmitrzak-Weglarz M, Paszynska E, Bilska K, Szczesniewska P, Bryl E, Duda J, et al. Genes [Internet]. 2021 Sep 13;12(9):1407. Available from: http://dx.doi.org/10.3390/genes12091407 DOI Scholia
- Melatonin Mitigates Mitochondrial Meltdown: Interactions with SIRT3. Reiter R, Tan D, Rosales-Corral S, Galano A, Jou MJ, Acuna-Castroviejo D. IJMS [Internet]. 2018 Aug 18;19(8):2439. Available from: http://dx.doi.org/10.3390/ijms19082439 DOI Scholia
- Development of Novel Experimental Models to Study Flavoproteome Alterations in Human Neuromuscular Diseases: The Effect of Rf Therapy. Tolomeo M, Nisco A, Leone P, Barile M. IJMS [Internet]. 2020 Jul 26;21(15):5310. Available from: http://dx.doi.org/10.3390/ijms21155310 DOI Scholia
- Cannabidiol for Pain Treatment: Focus on Pharmacology and Mechanism of Action. Mlost J, Bryk M, Starowicz K. IJMS [Internet]. 2020 Nov 23;21(22):8870. Available from: http://dx.doi.org/10.3390/ijms21228870 DOI Scholia
- Why Monoamine Oxidase B Preferably Metabolizes N-Methylhistamine over Histamine: Evidence from the Multiscale Simulation of the Rate-Limiting Step. Maršavelski A, Mavri J, Vianello R, Stare J. IJMS [Internet]. 2022 Feb 8;23(3):1910. Available from: http://dx.doi.org/10.3390/ijms23031910 DOI Scholia
- Autism Spectrum Disorder: Focus on Glutamatergic Neurotransmission. Montanari M, Martella G, Bonsi P, Meringolo M. IJMS [Internet]. 2022 Mar 31;23(7):3861. Available from: http://dx.doi.org/10.3390/ijms23073861 DOI Scholia
- B Vitamins and the Brain: Mechanisms, Dose and Efficacy—A Review. Kennedy D. Nutrients [Internet]. 2016 Jan 27;8(2):68. Available from: http://dx.doi.org/10.3390/nu8020068 DOI Scholia
- Food Intolerance: The Role of Histamine. Shulpekova YO, Nechaev VM, Popova IR, Deeva TA, Kopylov AT, Malsagova KA, et al. Nutrients [Internet]. 2021 Sep 15;13(9):3207. Available from: http://dx.doi.org/10.3390/nu13093207 DOI Scholia
- Association of the rs2242446 Polymorphism in the Norepinephrine Transporter Gene SLC6A2 and Anxious Arousal Symptoms of Posttraumatic Stress Disorder. Pietrzak RH, Sumner JA, Aiello AE, Uddin M, Neumeister A, Guffanti G, et al. J Clin Psychiatry [Internet]. 2015 Apr 22;76(04):e537–8. Available from: http://dx.doi.org/10.4088/JCP.14l09346 DOI Scholia
- Quinolinic Acid, an Endogenous Molecule Combining Excitotoxicity, Oxidative Stress and Other Toxic Mechanisms. La Cruz VPD, Carrillo-Mora P, Santamaría A. Int J�Tryptophan�Res [Internet]. 2012 Jan;5:IJTR.S8158. Available from: http://dx.doi.org/10.4137/IJTR.S8158 DOI Scholia
- Association of polymorphic variants of DDC (AADC), AANAT and ASMT genes encoding enzymes for melatonin synthesis with the higher risk of neuropsychiatric disorders. Moskaleva PV, Shnayder NA, Nasyrova RF. Z nevrol psikhiatr im SS Korsakova [Internet]. 2021;121(5):151. Available from: http://dx.doi.org/10.17116/jnevro2021121041151 DOI Scholia
- Riboflavin metabolism: role in mitochondrial function. Balasubramaniam S, Yaplito-Lee J. jtgg [Internet]. 2020; Available from: http://dx.doi.org/10.20517/jtgg.2020.34 DOI Scholia
- The relationship of Rett syndrome and MECP2 disorders to autism. Neul JL. Dialogues in Clinical Neuroscience [Internet]. 2012 Sep 30;14(3):253–62. Available from: http://dx.doi.org/10.31887/DCNS.2012.14.3/jneul DOI Scholia
- Resting distribution and stimulated translocation of protein kinase C isoforms alpha, epsilon and zeta in response to bradykinin and TNF in human endothelial cells. Ross D, Joyner WL. Endothelium. 1997;5(4):321–32. PubMed Europe PMC Scholia
- Biosynthesis of cobalamin (vitamin B12): a bacterial conundrum. Raux E, Schubert HL, Warren MJ. Cell Mol Life Sci. 2000 Dec;57(13–14):1880–93. PubMed Europe PMC Scholia
- Norepinephrine inhibits glucose-stimulated, Ca2+-independent insulin release independently from its action on adenylyl cyclase. Yajima H, Komatsu M, Sato Y, Yamada S, Yamauchi K, Sharp GW, et al. Endocr J. 2001 Dec;48(6):647–54. PubMed Europe PMC Scholia
- Inhibition of an equilibrative nucleoside transporter by cannabidiol: a mechanism of cannabinoid immunosuppression. Carrier EJ, Auchampach JA, Hillard CJ. Proc Natl Acad Sci U S A. 2006 May 16;103(20):7895–900. PubMed Europe PMC Scholia
- Akt-dependent and -independent mechanisms of mTOR regulation in cancer. Memmott RM, Dennis PA. Cell Signal. 2009 May;21(5):656–64. PubMed Europe PMC Scholia
- Mechanism of vitamin B12-responsiveness in cblC methylmalonic aciduria with homocystinuria. Froese DS, Zhang J, Healy S, Gravel RA. Mol Genet Metab. 2009 Dec;98(4):338–43. PubMed Europe PMC Scholia
- mTOR regulation of autophagy. Jung CH, Ro SH, Cao J, Otto NM, Kim DH. FEBS Lett. 2010 Apr 2;584(7):1287–95. PubMed Europe PMC Scholia
- The Beclin 1-VPS34 complex--at the crossroads of autophagy and beyond. Funderburk SF, Wang QJ, Yue Z. Trends Cell Biol. 2010 Jun;20(6):355–62. PubMed Europe PMC Scholia
- Mammalian Atg18 (WIPI2) localizes to omegasome-anchored phagophores and positively regulates LC3 lipidation. Polson HEJ, de Lartigue J, Rigden DJ, Reedijk M, Urbé S, Clague MJ, et al. Autophagy. 2010 May;6(4):506–22. PubMed Europe PMC Scholia
- A cis-phase interaction study of genetic variants within the MAOA gene in major depressive disorder. Zhang J, Chen Y, Zhang K, Yang H, Sun Y, Fang Y, et al. Biol Psychiatry. 2010 Nov 1;68(9):795–800. PubMed Europe PMC Scholia
- Inborn errors of cobalamin absorption and metabolism. Watkins D, Rosenblatt DS. Am J Med Genet C Semin Med Genet. 2011 Feb 15;157C(1):33–44. PubMed Europe PMC Scholia
- AMPK -> ULK1 -> autophagy. Roach PJ. Mol Cell Biol. 2011 Aug;31(15):3082–4. PubMed Europe PMC Scholia
- Identification of cytochrome P450 enzymes responsible for metabolism of cannabidiol by human liver microsomes. Jiang R, Yamaori S, Takeda S, Yamamoto I, Watanabe K. Life Sci. 2011 Aug 1;89(5–6):165–70. PubMed Europe PMC Scholia
- Angiotensin II, NADPH oxidase, and redox signaling in the vasculature. Nguyen Dinh Cat A, Montezano AC, Burger D, Touyz RM. Antioxid Redox Signal. 2013 Oct 1;19(10):1110–20. PubMed Europe PMC Scholia
- Endocannabinoids via CB₁ receptors act as neurogenic niche cues during cortical development. Díaz-Alonso J, Guzmán M, Galve-Roperh I. Philos Trans R Soc Lond B Biol Sci. 2012 Dec 5;367(1607):3229–41. PubMed Europe PMC Scholia
- Preliminary investigation of the influence of dopamine regulating genes on social working memory. Dumontheil I, Jensen SKG, Wood NW, Meyer ML, Lieberman MD, Blakemore SJ. Soc Neurosci. 2014;9(5):437–51. PubMed Europe PMC Scholia
- The Altered Brain Activation of Phonological Working Memory, Dual Tasking, and Distraction Among Participants With Adult ADHD and the Effect of the MAOA Polymorphism. Ko CH, Hsieh TJ, Wang PW, Lin WC, Chen CS, Yen JY. J Atten Disord. 2018 Feb;22(3):240–9. PubMed Europe PMC Scholia
- MAOA Variants and Genetic Susceptibility to Major Psychiatric Disorders. Liu Z, Huang L, Luo XJ, Wu L, Li M. Mol Neurobiol. 2016 Sep;53(7):4319–27. PubMed Europe PMC Scholia
- Pharmacokinetic Drug Interactions with Tobacco, Cannabinoids and Smoking Cessation Products. Anderson GD, Chan LN. Clin Pharmacokinet. 2016 Nov;55(11):1353–68. PubMed Europe PMC Scholia
- Regulation and function of AMPK in physiology and diseases. Jeon SM. Exp Mol Med. 2016 Jul 15;48(7):e245. PubMed Europe PMC Scholia
- MAOA Influences the Trajectory of Attentional Development. Lundwall RA, Rasmussen CG. Front Hum Neurosci. 2016 Aug 25;10:424. PubMed Europe PMC Scholia
- WIPI3 and WIPI4 β-propellers are scaffolds for LKB1-AMPK-TSC signalling circuits in the control of autophagy. Bakula D, Müller AJ, Zuleger T, Takacs Z, Franz-Wachtel M, Thost AK, et al. Nat Commun. 2017 May 31;8:15637. PubMed Europe PMC Scholia
- Pilot study indicate role of preferentially transmitted monoamine oxidase gene variants in behavioral problems of male ADHD probands. Karmakar A, Goswami R, Saha T, Maitra S, Roychowdhury A, Panda CK, et al. BMC Med Genet. 2017 Oct 5;18(1):109. PubMed Europe PMC Scholia
- The mammalian ULK1 complex and autophagy initiation. Zachari M, Ganley IG. Essays Biochem. 2017 Dec 12;61(6):585–96. PubMed Europe PMC Scholia
- Targeting the IDO1 pathway in cancer: from bench to bedside. Liu M, Wang X, Wang L, Ma X, Gong Z, Zhang S, et al. J Hematol Oncol. 2018 Aug 2;11(1):100. PubMed Europe PMC Scholia
- MECP2 Mutation Interrupts Nucleolin-mTOR-P70S6K Signaling in Rett Syndrome Patients. Olson CO, Pejhan S, Kroft D, Sheikholeslami K, Fuss D, Buist M, et al. Front Genet. 2018 Dec 19;9:635. PubMed Europe PMC Scholia
- Systemic Perturbations in Amine and Kynurenine Metabolism Associated with Acute SARS-CoV-2 Infection and Inflammatory Cytokine Responses. Lawler NG, Gray N, Kimhofer T, Boughton B, Gay M, Yang R, et al. J Proteome Res. 2021 May 7;20(5):2796–811. PubMed Europe PMC Scholia
- Serum microRNA-501-3p is a potential diagnostic tool for detecting mild cognitive impairment: Ehime genome study. Toyama K, Spin JM, Tsao PS, Maruyama K, Osawa H, Mogi M, et al. J Neurochem. 2023 Sep;166(6):960–71. PubMed Europe PMC Scholia
- URL: http://autism.mindspec.org/GeneDetail/NLGN3
- URL: http://autism.mindspec.org/GeneDetail/NLGN4X
- URL: http://autism.mindspec.org/GeneDetail/PTEN
- URL: http://autism.mindspec.org/GeneDetail/SHANK2
- URL: http://www.genecards.org/cgi-bin/carddisp.pl?gene=CNR2&keywords=cnr2
- URL: https://en.wikipedia.org/wiki/DLG4
- URL: https://hmdb.ca/proteins/HMDBP00295
- URL: https://imfar.confex.com/imfar/2008/webprogram/Paper2290.html
- URL: https://magazine.medlineplus.gov/pdf/Common-antidepressants.PDF_.Final_.09012023.pdf
- URL: https://medlineplus.gov/genetics/gene/hcfc1/#synonyms
- URL: https://my.clevelandclinic.org/health/treatments/24797-snri
- URL: https://psychscenehub.com/psychinsights/guanfacine-and-clonidine-for-adhd/
- URL: https://tmedweb.tulane.edu/pharmwiki/doku.php/amphetamines
- URL: https://www.genome.jp/pathway/hsa04150
- URL: https://www.genome.jp/pathway/map04921+K04229
- URL: https://www.pharmgkb.org/pathway/PA166181002
- URL: https://www.pharmgkb.org/pathway/PA166181140
- URL: https://www.potomacpsychiatry.com/blog/adra2a-gene-test-adhd-genetic-testing