Affected pathways in Duchenne muscular dystrophy (WP5356)

Homo sapiens

Disturbed pathways in DMD

Authors

Pauladewenter , Ash Iyer , Egon Willighagen , Alex Pico , Kristina Hanspers , Lars Willighagen , Eric Weitz , and Tooba Abbassi-Daloii

Activity

last edited

Discuss this pathway

Check for ongoing discussions or start your own.

Cited In

Are you planning to include this pathway in your next publication? See How to Cite and add a link here to your paper once it's online.

Organisms

Homo sapiens

Communities

Diseases Rare Diseases

Annotations

Disease Ontology

muscular disease Duchenne muscular dystrophy

Pathway Ontology

altered calcium/calcium-mediated signaling pathway disease pathway muscular disease pathway

Participants

Label Type Compact URI Comment
Lactate Metabolite chebi:24996
[Ca2+]mito Metabolite hmdb:HMDB0000464
Ca2+ Metabolite hmdb:HMDB0000464
Ca2+ Metabolite hmdb:HMDB0000464
ROS Metabolite wikidata:Q424361
ROS Metabolite wikidata:Q424361
Ca2+ Metabolite hmdb:HMDB0000464
ATP Metabolite chebi:30616
Fibronectin Metabolite chebi:5058
Collagen Metabolite chebi:3815
Ang 2 Metabolite pubchem.compound:172198 'angiotensin 2 (Ang 2)' Peptide hormone; 'Asp-Arg-Val-Tyr-Ile-His-Pro-Phe Angiotensin I is converted to angiotensin II (AII) through removal of two C-terminal residues by the enzyme angiotensin-converting enzyme (ACE), primarily through ACE within the lung (but also present in endothelial cells, kidney epithelial cells, and the brain). Angiotensin II acts on the central nervous system to increase vasopressin production, and also acts on venous and arterial smooth muscle to cause vasoconstriction. Angiotensin II also increases aldosterone secretion; it therefore acts as an endocrine, autocrine/paracrine, and intracrine hormone.' Source: 'https://en.wikipedia.org/wiki/Angiotensin#Angiotensin_II'
Ca2+ Metabolite hmdb:HMDB0000464
Platelet-activating factor Metabolite hmdb:HMDB0062195
Ca2+ Metabolite hmdb:HMDB0000464
Ca2+ Metabolite hmdb:HMDB0000464
Ca2+ Metabolite hmdb:HMDB0000464
Na+ Metabolite hmdb:HMDB0000588
Ca2+ Metabolite hmdb:HMDB0000464
Na+ Metabolite hmdb:HMDB0000588
Ca2+ Metabolite hmdb:HMDB0000464
Ca2+ Metabolite hmdb:HMDB0000464
ROS Metabolite wikidata:Q424361
Cl- Metabolite hmdb:HMDB0000492
NO Metabolite hmdb:HMDB0003378
H2O2 Metabolite hmdb:HMDB0003125
HOCl Metabolite hmdb:HMDB0001050 Hypochlorous acid (HOCl) is a type of reactive oxygen species which is produced within neutrophils, and can enter the muscle tissue where it promotes oxidative stress
L-Arginie Metabolite hmdb:HMDB0000517
HOCl Metabolite hmdb:HMDB0001050
RYR1 GeneProduct hgnc.symbol:RYR1
NOX2 GeneProduct uniprot:P04839
SOCE GeneProduct hgnc.symbol:SARAF
Dystrophin deficiency GeneProduct hgnc.symbol:DMD
DMD GeneProduct hgnc.symbol:DMD
DMD(+mutation) GeneProduct hgnc.symbol:DMD
TGF-B1 GeneProduct ensembl:ENSG00000105329
ADT2 GeneProduct hgnc.symbol:SLC25A5
OPN GeneProduct hgnc.symbol:SPP1
TGFBR2 GeneProduct hgnc.symbol:TGFBR2
TGFBR1 GeneProduct hgnc.symbol:TGFBR1
SERPINE1 GeneProduct hgnc.symbol:SERPINE1 Also known as plasminogen activator inhibitor-1 PAI-1
PLAU GeneProduct hgnc.symbol:PLAU Also known as Urokinase-type plasminogen inhibitor (uPA)
IL-6 GeneProduct ensembl:ENSG00000136244 In DMD, IL-6 is upregulated due to recurrent activation of the M1 macrophages by DAMPs. When upregulated for prolonged periods of time, the IL-6 will cause chronic inflammation and also reduce the population of the satellite cells that are needed for muscle regeneration.
IL-1B GeneProduct ensembl:ENSG00000115008
SMAD2 GeneProduct hgnc.symbol:SMAD2
SMAD3 GeneProduct hgnc.symbol:SMAD3
NOX4 GeneProduct hgnc.symbol:NOX4
CTGF GeneProduct hgnc.symbol:CCN2
TNF-a GeneProduct ensembl:ENSG00000232810
AGTR1 GeneProduct hgnc.symbol:AGTR1
Dystrobrevin alpha GeneProduct hgnc.symbol:DTNA
Syntrophin beta-1 GeneProduct hgnc.symbol:SNTB1
alpha sarcoglycan GeneProduct hgnc.symbol:SGCA
Sarcospan GeneProduct hgnc.symbol:SSPN
Dystrophin GeneProduct hgnc.symbol:DMD
Dystroglycan 1 GeneProduct hgnc.symbol:DAG1
STIM1 GeneProduct ensembl:ENSG00000167323
Orai1 GeneProduct ensembl:ENSG00000276045
RYR1 GeneProduct hgnc.symbol:RYR1
CAC1F GeneProduct ensembl:ENSG00000102001 Voltage-dependent L-type calcium channel subunit alpha-1F
CAC1S GeneProduct ensembl:ENSG00000081248 Voltage-dependent L-type calcium channel subunit alpha-1S
CACB2 GeneProduct ensembl:ENSG00000165995 Voltage-dependent L-type calcium channel subunit beta-2
CACB1 GeneProduct ensembl:ENSG00000067191 Voltage-dependent L-type calcium channel subunit beta-1. Only isoform 2 is present in skeletal muscles
CA2D1 GeneProduct ensembl:ENSG00000153956 Voltage-dependent calcium channel subunit alpha-2/delta-1. Only isoform 1 is found in the skeletal muscles
CCG1 GeneProduct ensembl:ENSG00000108878 Voltage-dependent calcium channel subunit gamma-1
DMD (+mutations) GeneProduct ensembl:ENSG00000198947
Calstabin-1 GeneProduct ensembl:ENSG00000088832 Often, there is Ca2+ leakage from the RyRs in the SR, but this process is limited by calstabin-1. Calstabin-1 is a protein which has a high affinity for RyR, stimulated by the dystrophin. However, due to DMD mutations and thus reduction of dystrophin, the Calstabin-1 no longer binds with such a high affinity to the RyR, thus not blocking the calcium leakage
Type your comment here
IL-1α GeneProduct ensembl:ENSG00000115008
IL-6 GeneProduct ensembl:ENSG00000136244 In DMD, IL-6 is upregulated due to recurrent activation of the M1 macrophages by DAMPs. When upregulated for prolonged periods of time, the IL-6 will cause chronic inflammation and also reduce the population of the satellite cells that are needed for muscle regeneration.
IL-10 GeneProduct ensembl:ENSG00000136634
NFkB GeneProduct ensembl:ENSG00000109320
IκBα GeneProduct ensembl:ENSG00000100906
Calpain-3 GeneProduct ensembl:ENSG00000092529
TGF-β GeneProduct ensembl:ENSG00000105329
TNF-α GeneProduct ensembl:ENSG00000232810
Phospholipase A2 GeneProduct ensembl:ENSG00000116711
NFkB GeneProduct ensembl:ENSG00000109320
TRPC3 GeneProduct ensembl:ENSG00000138741 Short transient receptor potential channel 3
TRPC1 GeneProduct ensembl:ENSG00000144935 Short transient receptor potential channel 1
TRPC6 GeneProduct ensembl:ENSG00000137672 Short transient receptor potential channel 6
CASQ 1 GeneProduct hgnc.symbol:CASQ1
Triadin GeneProduct hgnc.symbol:TRDN
AMPK1 GeneProduct ensembl:ENSG00000132356
NE GeneProduct ensembl:ENSG00000197561 Neutrophil elastase (NE) is a type of serine protease which promotes the formation of neutrophil extracellular traps (NETs), which themselves function to trap invading microbes but also cuase tissue damage as collateral. Although possibly playing a role in the pathophysiology of DMD, it is not yet confirmed if NETs contribute to the muscle damage
MPO GeneProduct ensembl:ENSG00000005381 Myeloperoxidase (MPO) is a potent enzyme which catalyses the production of hypochlorous acid (HOCl) when hydrogen peroxide (H2O2) and chloride ions (Cl-) are present within the neutrophil.
FGG GeneProduct hgnc.symbol:FGG
FGB GeneProduct hgnc.symbol:FGB
FGA GeneProduct hgnc.symbol:FGA
Caspase 9 Protein hgnc.symbol:CASP9
VDAC1 Protein hgnc.symbol:VDAC1
CyP-D Protein hgnc.symbol:PPIF
IP3R2 Protein hgnc.symbol:ITPR2
IP3R3 Protein hgnc.symbol:ITPR3
Phospholipase A2 Protein hgnc.symbol:PLA2G2A
MMP2 Protein hgnc.symbol:MMP2
TOM Protein hgnc.symbol:TOMM20
GL1 Protein hgnc.symbol:GLI1
MCU Protein hgnc.symbol:MCU
IP3R1 Protein uniprot:Q14643
Proteoglycans Protein hgnc.symbol:PRG3
SERCA1 Protein hgnc.symbol:ATP2A1
Glycoproteins Protein hgnc.symbol:GP2
VDAC1 Protein hgnc.symbol:VDAC1
Troponin Protein hgnc.symbol:TNNI1
Calpain-3 Protein hgnc.symbol:CAPN3
MCUb Protein hgnc.symbol:MCUB
MMP9 Protein hgnc.symbol:MMP9
Sig-1R Protein hgnc.symbol:SIGMAR1
GRP75 Protein uniprot:P38646
SMAD4 Protein hgnc.symbol:SMAD4
SMAD2 Protein hgnc.symbol:SMAD2
SMAD3 Protein hgnc.symbol:SMAD3
SCX Protein hgnc.symbol:SCX
Sarcolipin Protein ensembl:ENSG00000170290
CaMK2 Protein ensembl:ENSG00000145349
AMPK2 Protein ensembl:ENSG00000162409
iNOS Protein ensembl:ENSG00000007171

References

  1. Phospholipase A2 activity in dystrophinopathies. Lindahl M, Bäckman E, Henriksson KG, Gorospe JR, Hoffman EP. Neuromuscul Disord. 1995 May;5(3):193–9. PubMed Europe PMC Scholia
  2. Function and genetics of dystrophin and dystrophin-related proteins in muscle. Blake DJ, Weir A, Newey SE, Davies KE. Physiol Rev. 2002 Apr;82(2):291–329. PubMed Europe PMC Scholia
  3. Muscular dystrophies: genes to pathogenesis. Dalkilic I, Kunkel LM. Curr Opin Genet Dev. 2003 Jun;13(3):231–8. PubMed Europe PMC Scholia
  4. Lactate and oxygen constitute a fundamental regulatory mechanism in wound healing. Trabold O, Wagner S, Wicke C, Scheuenstuhl H, Hussain MZ, Rosen N, et al. Wound Repair Regen. 2003;11(6):504–9. PubMed Europe PMC Scholia
  5. Transcriptional and posttranscriptional regulation of the plasminogen activator system. Nagamine Y, Medcalf RL, Muñoz-Cánoves P. Thromb Haemost. 2005 Apr;93(4):661–75. PubMed Europe PMC Scholia
  6. New roles of calsequestrin and triadin in cardiac muscle. Knollmann BC. J Physiol. 2009 Jul 1;587(Pt 13):3081–7. PubMed Europe PMC Scholia
  7. Role of matrix metalloproteinases in skeletal muscle: migration, differentiation, regeneration and fibrosis. Chen X, Li Y. Cell Adh Migr. 2009;3(4):337–41. PubMed Europe PMC Scholia
  8. Apoptosis and autophagy: decoding calcium signals that mediate life or death. Harr MW, Distelhorst CW. Cold Spring Harb Perspect Biol. 2010 Oct;2(10):a005579. PubMed Europe PMC Scholia
  9. Dynamics and regulation of contractile actin-myosin networks in morphogenesis. Kasza KE, Zallen JA. Curr Opin Cell Biol. 2011 Feb;23(1):30–8. PubMed Europe PMC Scholia
  10. Involvement of TRPV2 and SOCE in calcium influx disorder in DMD primary human myotubes with a specific contribution of α1-syntrophin and PLC/PKC in SOCE regulation. Harisseh R, Chatelier A, Magaud C, Déliot N, Constantin B. Am J Physiol Cell Physiol. 2013 May 1;304(9):C881-94. PubMed Europe PMC Scholia
  11. The role of fibrosis in Duchenne muscular dystrophy. Klingler W, Jurkat-Rott K, Lehmann-Horn F, Schleip R. Acta Myol. 2012 Dec;31(3):184–95. PubMed Europe PMC Scholia
  12. The role of oxidative stress during inflammatory processes. Lugrin J, Rosenblatt-Velin N, Parapanov R, Liaudet L. Biol Chem. 2014 Feb;395(2):203–30. PubMed Europe PMC Scholia
  13. Understanding the process of fibrosis in Duchenne muscular dystrophy. Kharraz Y, Guerra J, Pessina P, Serrano AL, Muñoz-Cánoves P. Biomed Res Int. 2014;2014:965631. PubMed Europe PMC Scholia
  14. New insights on contraction efficiency in patients with Duchenne muscular dystrophy. Lacourpaille L, Hug F, Guével A, Péréon Y, Magot A, Hogrel JY, et al. J Appl Physiol (1985). 2014 Sep 15;117(6):658–62. PubMed Europe PMC Scholia
  15. Genetic evidence in the mouse solidifies the calcium hypothesis of myofiber death in muscular dystrophy. Burr AR, Molkentin JD. Cell Death Differ. 2015 Sep;22(9):1402–12. PubMed Europe PMC Scholia
  16. Oxidative Stress-Mediated Skeletal Muscle Degeneration: Molecules, Mechanisms, and Therapies. Choi MH, Ow JR, Yang ND, Taneja R. Oxid Med Cell Longev. 2016;2016:6842568. PubMed Europe PMC Scholia
  17. Anti-inflammatory drugs for Duchenne muscular dystrophy: focus on skeletal muscle-releasing factors. Miyatake S, Shimizu-Motohashi Y, Takeda S, Aoki Y. Drug Des Devel Ther. 2016 Aug 30;10:2745–58. PubMed Europe PMC Scholia
  18. Expression levels of TGF-β1 and CTGF are associated with the severity of Duchenne muscular dystrophy. Song Y, Yao S, Liu Y, Long L, Yang H, Li Q, et al. Exp Ther Med. 2017 Apr;13(4):1209–14. PubMed Europe PMC Scholia
  19. Role of Transforming Growth Factor-β in Skeletal Muscle Fibrosis: A Review. Ismaeel A, Kim JS, Kirk JS, Smith RS, Bohannon WT, Koutakis P. Int J Mol Sci. 2019 May 17;20(10):2446. PubMed Europe PMC Scholia
  20. Lactate and pyruvate promote oxidative stress resistance through hormetic ROS signaling. Tauffenberger A, Fiumelli H, Almustafa S, Magistretti PJ. Cell Death Dis. 2019 Sep 10;10(9):653. PubMed Europe PMC Scholia
  21. Control of Muscle Fibro-Adipogenic Progenitors by Myogenic Lineage is Altered in Aging and Duchenne Muscular Dystrophy. Moratal C, Arrighi N, Dechesne CA, Dani C. Cell Physiol Biochem. 2019;53(6):1029–45. PubMed Europe PMC Scholia
  22. Transport of Ca2+ and Ca2+-dependent permeability transition in heart mitochondria in the early stages of Duchenne muscular dystrophy. Dubinin MV, Talanov EY, Tenkov KS, Starinets VS, Mikheeva IB, Belosludtsev KN. Biochim Biophys Acta Bioenerg. 2020 Oct 1;1861(10):148250. PubMed Europe PMC Scholia
  23. Role of the Renin-Angiotensin-Aldosterone System in Dystrophin-Deficient Cardiomyopathy. Rodriguez-Gonzalez M, Lubian-Gutierrez M, Cascales-Poyatos HM, Perez-Reviriego AA, Castellano-Martinez A. Int J Mol Sci. 2020 Dec 31;22(1):356. PubMed Europe PMC Scholia
  24. Metformin Reverses the Enhanced Myocardial SR/ER-Mitochondria Interaction and Impaired Complex I-Driven Respiration in Dystrophin-Deficient Mice. Angebault C, Panel M, Lacôte M, Rieusset J, Lacampagne A, Fauconnier J. Front Cell Dev Biol. 2021 Jan 25;8:609493. PubMed Europe PMC Scholia
  25. Pharmacological activation of SERCA ameliorates dystrophic phenotypes in dystrophin-deficient mdx mice. Nogami K, Maruyama Y, Sakai-Takemura F, Motohashi N, Elhussieny A, Imamura M, et al. Hum Mol Genet. 2021 May 31;30(11):1006–19. PubMed Europe PMC Scholia
  26. Abnormal Calcium Handling in Duchenne Muscular Dystrophy: Mechanisms and Potential Therapies. Mareedu S, Million ED, Duan D, Babu GJ. Front Physiol. 2021 Apr 9;12:647010. PubMed Europe PMC Scholia
  27. The Interplay of Mitophagy and Inflammation in Duchenne Muscular Dystrophy. Reid AL, Alexander MS. Life (Basel). 2021 Jul 4;11(7):648. PubMed Europe PMC Scholia
  28. The role of mitochondria in Duchenne muscular dystrophy. Budzinska M, Zimna A, Kurpisz M. J Physiol Pharmacol. 2021 Apr;72(2):10.26402/jpp.2021.2.01. PubMed Europe PMC Scholia
  29. Inflammation in Duchenne Muscular Dystrophy-Exploring the Role of Neutrophils in Muscle Damage and Regeneration. Tulangekar A, Sztal TE. Biomedicines. 2021 Oct 1;9(10):1366. PubMed Europe PMC Scholia
  30. Disrupted Calcium Homeostasis in Duchenne Muscular Dystrophy: A Common Mechanism behind Diverse Consequences. Zabłocka B, Górecki DC, Zabłocki K. Int J Mol Sci. 2021 Oct 13;22(20):11040. PubMed Europe PMC Scholia
  31. Skeletal Ryanodine Receptors Are Involved in Impaired Myogenic Differentiation in Duchenne Muscular Dystrophy Patients. Meyer P, Notarnicola C, Meli AC, Matecki S, Hugon G, Salvador J, et al. Int J Mol Sci. 2021 Nov 30;22(23):12985. PubMed Europe PMC Scholia
  32. Role of SERCA and sarcolipin in adaptive muscle remodeling. Chambers PJ, Juracic ES, Fajardo VA, Tupling AR. Am J Physiol Cell Physiol. 2022 Mar 1;322(3):C382–94. PubMed Europe PMC Scholia
  33. NOX4 inhibition promotes the remodeling of dystrophic muscle. Hammers DW. JCI Insight. 2022 Oct 24;7(20):e158316. PubMed Europe PMC Scholia