Diet-dependent trimethylamine/trimethylamine N-oxide metabolism (WP5219)
Homo sapiens
The host-microbiome pathway trimethylamine/trimethylamine N-oxide (TMA/TMAO) pathway which exists along the gut-heart axis. The precursors choline, l-carnitine and betaine are first microbially transformed to TMA. This metabolite is subsequently converted to TMAO by the flavin-containing monooxygenase 3.
Authors
Nina Valenbreder , Kristina Hanspers , Eric Weitz , Egon Willighagen , and Denise SlenterActivity
Discuss this pathway
Check for ongoing discussions or start your own.
Cited In
Are you planning to include this pathway in your next publication? See How to Cite and add a link here to your paper once it's online.
Organisms
Homo sapiensCommunities
Annotations
Pathway Ontology
classic metabolic pathwayLabel | Type | Compact URI | Comment |
---|---|---|---|
γBB | Metabolite | chembl.compound:CHEMBL2074645 | |
Dimethylglycine | Metabolite | kegg.compound:C01026 | |
Choline | Metabolite | kegg.compound:C00114 | |
BETALD | Metabolite | kegg.compound:C00576 | |
BET | Metabolite | kegg.compound:C00719 | |
FAD | Metabolite | kegg.compound:C00016 | |
FADH2 | Metabolite | wikidata:Q26998317 | |
NADH | Metabolite | kegg.compound:C00003 | |
H20 | Metabolite | chebi:15377 | |
Carnitine | Metabolite | kegg.compound:C00318 | |
TMA | Metabolite | kegg.compound:C00565 | |
Acetate | Metabolite | kegg.compound:C00033 | |
TMAO | Metabolite | kegg.compound:C01104 | |
Transmethylase | GeneProduct | kegg.genes:EC 2.1.1.157 | |
FMO3 | Protein | ensembl:ENSG00000007933 | |
ALDH7A1 | Protein | ensembl:ENSG00000164904 | |
TMAO aldolase | Protein | kegg.genes:4.1.2.32 | |
Tmm | Protein | kegg.genes:1.14.13.148 | |
SLC44A1 | Protein | ensembl:ENSG00000070214 | |
CHDH | Protein | ensembl:ENSG00000016391 | |
CntA/B | Protein | uniprot:D0C9N6 |
References
- Methylotrophic Bacteria in Trimethylaminuria and Bacterial Vaginosis. Wood AP, Warren FJ, Kelly DP. In: Handbook of Hydrocarbon and Lipid Microbiology [Internet]. Springer Berlin Heidelberg; 2010. p. 3227–40. Available from: http://dx.doi.org/10.1007/978-3-540-77587-4_245 DOI Scholia
- Betaine: New Oxidant in the Stickland Reaction and Methanogenesis from Betaine and l-Alanine by a Clostridium sporogenes-Methanosarcina barkeri Coculture. Naumann E, Hippe H, Gottschalk G. Appl Environ Microbiol. 1983 Feb;45(2):474–83. PubMed Europe PMC Scholia
- Microbial conversion of choline to trimethylamine requires a glycyl radical enzyme. Craciun S, Balskus EP. Proc Natl Acad Sci U S A. 2012 Dec 26;109(52):21307–12. PubMed Europe PMC Scholia
- Trimethylamine and Trimethylamine N-Oxide, a Flavin-Containing Monooxygenase 3 (FMO3)-Mediated Host-Microbiome Metabolic Axis Implicated in Health and Disease. Fennema D, Phillips IR, Shephard EA. Drug Metab Dispos. 2016 Nov;44(11):1839–50. PubMed Europe PMC Scholia
- Betaine in Inflammation: Mechanistic Aspects and Applications. Zhao G, He F, Wu C, Li P, Li N, Deng J, et al. Front Immunol. 2018 May 24;9:1070. PubMed Europe PMC Scholia
- Purification and Characterization of the Choline Trimethylamine-Lyase (CutC)-Activating Protein CutD. Bodea S, Balskus EP. Methods Enzymol. 2018;606:73–94. PubMed Europe PMC Scholia
- Choline oxidases. Gadda G. Enzymes. 2020;47:137–66. PubMed Europe PMC Scholia
- Structural basis of carnitine monooxygenase CntA substrate specificity, inhibition, and intersubunit electron transfer. Quareshy M, Shanmugam M, Townsend E, Jameson E, Bugg TDH, Cameron AD, et al. J Biol Chem. 2021;296:100038. PubMed Europe PMC Scholia
- Elucidation of an anaerobic pathway for metabolism of l-carnitine-derived γ-butyrobetaine to trimethylamine in human gut bacteria. Rajakovich LJ, Fu B, Bollenbach M, Balskus EP. Proc Natl Acad Sci U S A. 2021 Aug 10;118(32):e2101498118. PubMed Europe PMC Scholia
- The microbial gbu gene cluster links cardiovascular disease risk associated with red meat consumption to microbiota L-carnitine catabolism. Buffa JA, Romano KA, Copeland MF, Cody DB, Zhu W, Galvez R, et al. Nat Microbiol. 2022 Jan;7(1):73–86. PubMed Europe PMC Scholia