Kynurenine pathway and links to cell senescence (WP5044)

Homo sapiens

The kynurenine pathway is the major path for Tryptophan (Trp) breakdown (Castro-Portuguez & Sutphin, 2020; Dalton et al.,2020; Kondrikov et al., 2020; Li, Oxenkrug & Yang, 2017; Lindquist et al., 2020; Lugo-Huitron et al., 2013; Oxenkrug, 2011; Platten et al., 2019; Savitz, 2019; Soegdrageret al., 2019; Tan & Guillemin, 2019). The kynurenine (Kyn)/Trp ratio is proposed to be an accurate indicator of biological age as well as an indicator of risk for age-related diseases (Castro-Portuguez & Sutphin, 2020; Li et al., 2017; Lindquist et al., 2020; Oxenkrug, 2011; Platten et al., 2019; Savitz, 2019; Soegdrageret al., 2019). The first and also rate-limiting enzymes that determine rate of Trp conversion into N-formylkynurenine and further on into Kyn are tryptophan-2,3-dioxygenase (TDO) and indoleamine-2,3-dioxygenase (IDO), out of which the IDO isoform IDO1 is the most important (Castro-Portuguez & Sutphin, 2020; Dalton et al.,2020; Li et al., 2017; Lindquist et al., 2020; Lugo-Huitron et al., 2013; Minhas et al., 2018; Oxenkrug, 2011; Platten et al., 2019; Savitz, 2019; Soegdrageret al., 2019; Tan & Guillemin, 2019). This catalytic enzyme is activated by pro-inflammatory cytokines such as interleukins, interferons gamma and beta or the aryl hydrocarbon receptor (AhR) (Castro-Portuguez & Sutphin, 2020; Dalton et al.,2020; Kondrikov et al., 2020; Li et al., 2017; Lindquist et al., 2020; Lugo-Huitron et al., 2013; Oxenkrug, 2011; Platten et al., 2019; Savitz, 2019; Soegdrageret al., 2019; Tan & Guillemin, 2019). Next, N-formylkynurenine is converted either into kynurenic acid by a kynurenine aminotransferase (KAT), anthranilic acid by kynureninase or, into Kyn by formidase (AFMID) (Castro-Portuguez & Sutphin, 2020). Kyn can alter the regulation of cell cycle and proliferation and induce oxidative stress through by inducing the transcription of multiple miRNAs (Dalton et al., 2020), activating the p53/p21 pathway (Kondrikov et al., 2020) and binding to AhR, resulting in a positive feedback loop, while further promoting oxidative stress (Castro-Portuguez & Sutphin, Dalton et al., 2020; 2020, Kondrikov et al., 2020). Kyn is further converted into 3-hydroxykynurenine (3HK) by kynurenine monooxygenase (KMO), then Kynureninase converts 3HK into 3-hydroxyanthranilic acid (3HAA) and then into 2-amino-3-carboxymuconate-6-semialdehyde (ACMSA) (Castro-Portuguez & Sutphin, 2020, Lindquist et al., 2020; Lugo-Huitron et al., 2013; Platten et al., 2019; Savitz, 2019; Tan & Guillemin, 2019). 3-HK can alternatively be converted into xanthurenic acid, a metabolite that modulates the tetrahydrobiopterin (BH4) pathway,(Tan & Guillemin, 2019). 3HAA can be converted either into quinolinic acid and from there enter the de novo NAD synthesis due to the enzymatic action of nicotinate-nucleotide pyrophosphorylase (QPRT), or it can be converted into 2-aminomuconate-6-semialdehyde (AMSA) which can be converted into glutaryl-CoA and enter the TCA cycle and glycolysis (Castro-Portuguez & Sutphin, 2020; Lindquist et al., 2020; Lugo-Huitron et al., 2013; Platten et al., 2019; Savitz, 2019; Tan & Guillemin, 2019). Kynurenine Pathway Library (https://enamine.net/hit-finding/focused-libraries/view-all/immuno-oncology-library/kynurenine-pathway-library) was also used as a reference for this pathway.

Authors

Sonia Balan , Egon Willighagen , Kristina Hanspers , Eric Weitz , Friederike Ehrhart , Finterly Hu , Lars Willighagen , and Nikita Krstevska

Activity

last edited

Discuss this pathway

Check for ongoing discussions or start your own.

Cited In

Are you planning to include this pathway in your next publication? See How to Cite and add a link here to your paper once it's online.

Organisms

Homo sapiens

Communities

Annotations

Pathway Ontology

cellular senescence pathway kynurenine metabolic pathway

Participants

Label Type Compact URI Comment
BH4 Metabolite chebi:15372
Glutaconyl-CoA Metabolite hmdb:HMDB01290
ACMSA Metabolite pubchem.compound:5280673
NAAD Metabolite hmdb:HMDB01179
Anthranilic acid Metabolite chebi:30754
Kynurenic acid Metabolite chebi:18344
Coenzyme A Metabolite chebi:15346
3-HK Metabolite chebi:1547
Cinnavalininate Metabolite chebi:3715
glutaryl-coA Metabolite chebi:15524
Kynurenine Metabolite chebi:28683
3-HAA Metabolite chebi:15793
Picolinic acid Metabolite hmdb:HMDB02243
AMSA Metabolite chebi:15745 Mus Musculus
acetoacetyl-CoA Metabolite wikidata:Q2639429
NAMN Metabolite chebi:15763
Melatonin Metabolite chebi:16796
NAD+ Metabolite chebi:15846
N-Formylkynurenine Metabolite chebi:18377
Xanthurenic acid Metabolite hmdb:HMDB00881
Acetyl-CoA Metabolite hmdb:HMDB01206
PGE2 Metabolite chebi:606564
Crotonyl-CoA Metabolite chebi:15473
Tryptophan Metabolite chebi:27897
Quinolinic acid Metabolite hmdb:HMDB00232
(S)-3-hydroxy-butanoyl-CoA Metabolite wikidata:Q27089442
CAT GeneProduct ensembl:ENSG00000121691 Catalase
FOXO1 GeneProduct ensembl:ENSG00000150907
KLF5 GeneProduct ensembl:ENSG00000102554
QPRT GeneProduct ensembl:ENSG00000103485
KMO Protein uniprot:O15229 Mitochondral-associated enzyme
IFNγ Protein uniprot:P01579
IDO1 Protein uniprot:P14902
eIF-2alpha Protein uniprot:Q9BQI3
3-HAO Protein uniprot:P46952
NOS Protein uniprot:B3VK56
p53 Protein uniprot:P04637
ACMSD Protein uniprot:Q8TDX5
TDO Protein uniprot:P48775
Kynureninase Protein uniprot:Q16719
p21 Protein uniprot:P38936
AFMID Protein uniprot:Q63HM1
KAT Protein uniprot:Q8N5Z0
IDO2 Protein uniprot:Q6ZQW0
IFNβ Protein uniprot:P01574
TNF Protein uniprot:P01375
AhR Protein uniprot:P35869 mice stem cells used
TLR 4 Protein uniprot:O00206
IL-1R Protein uniprot:P27930
GCN2 Protein uniprot:Q9P2K8

References

  1. Role of tryptophan metabolism on senescent synovial fibroblasts. Usategui A, López A, Municio C, Del Rey MJ, Pablos JL, Criado G. The Journal of Immunology [Internet]. 2020 May 1;204(1_Supplement):79.14-79.14. Available from: http://dx.doi.org/10.4049/jimmunol.204.Supp.79.14 DOI Scholia
  2. KEGG Pathway: map00380
  3. Interferon-gamma-inducible kynurenines/pteridines inflammation cascade: implications for aging and aging-associated psychiatric and medical disorders. Oxenkrug GF. J Neural Transm (Vienna). 2011 Jan;118(1):75–85. PubMed Europe PMC Scholia
  4. Regulating the balance between the kynurenine and serotonin pathways of tryptophan metabolism. Li Y, Hu N, Yang D, Oxenkrug G, Yang Q. FEBS J. 2017 Mar;284(6):948–66. PubMed Europe PMC Scholia
  5. The kynurenine pathway: a finger in every pie. Savitz J. Mol Psychiatry. 2020 Jan;25(1):131–47. PubMed Europe PMC Scholia
  6. Kynurenine Pathway Metabolites as Biomarkers for Amyotrophic Lateral Sclerosis. Tan VX, Guillemin GJ. Front Neurosci. 2019 Sep 20;13:1013. PubMed Europe PMC Scholia
  7. Increased fatty acid oxidation and mitochondrial proliferation in liver are associated with increased plasma kynurenine metabolites and nicotinamide levels in normolipidemic and carnitine-depleted rats. Lindquist C, Bjørndal B, Lund A, Slettom G, Skorve J, Nygård O, et al. Biochim Biophys Acta Mol Cell Biol Lipids. 2020 Feb;1865(2):158543. PubMed Europe PMC Scholia
  8. Tryptophan Metabolism in Inflammaging: From Biomarker to Therapeutic Target. Sorgdrager FJH, Naudé PJW, Kema IP, Nollen EA, Deyn PPD. Front Immunol. 2019 Oct 30;10:2565. PubMed Europe PMC Scholia
  9. Accumulation of kynurenine elevates oxidative stress and alters microRNA profile in human bone marrow stromal cells. Dalton S, Smith K, Singh K, Kaiser H, Kolhe R, Mondal AK, et al. Exp Gerontol. 2020 Feb;130:110800. PubMed Europe PMC Scholia
  10. Kynurenine inhibits autophagy and promotes senescence in aged bone marrow mesenchymal stem cells through the aryl hydrocarbon receptor pathway. Kondrikov D, Elmansi A, Bragg RT, Mobley T, Barrett T, Eisa N, et al. Exp Gerontol. 2020 Feb;130:110805. PubMed Europe PMC Scholia
  11. Kynurenine pathway, NAD+ synthesis, and mitochondrial function: Targeting tryptophan metabolism to promote longevity and healthspan. Castro-Portuguez R, Sutphin GL. Exp Gerontol. 2020 Apr;132:110841. PubMed Europe PMC Scholia
  12. WikiPathways: WP4210