RAS and bradykinin pathways in COVID-19 (WP4969)

Homo sapiens

This pathway describes imbalances in RAS and Bradykinin pathways in COVID-19. The expression of several genes in these pathways is affected in by SARS-CoV-2: * SERPING1 is downregulated, which cancels the suppression of F12 of the intrinsic coagulation cascade, resulting in the production of bradykinin from kallikrein and KNG. * ACE is downregulated, which increases bradykinin levels. * ACE2 is upregulated, ACE is downregulated, which causes an increase in Angiotensin 1-9 and sensitization of bradykinin receptors. * NFkappaB is suppressed by SARS-Cov-2, decreasing its binding to the ACE promoter and subsequent transcription. The result of a hyperactive bradykinin system is vasodilation to the point of vascular leakage and infiltration of inflammatory cells. The pathway is based on figure 2A from [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7410499/ Garvin et al.]

Authors

Kristina Hanspers , Egon Willighagen , Friederike Ehrhart , Marvin Martens , Penny Nymark , Eric Weitz , and Denise Slenter

Activity

last edited

Discuss this pathway

Check for ongoing discussions or start your own.

Cited In

Are you planning to include this pathway in your next publication? See How to Cite and add a link here to your paper once it's online.

Organisms

Homo sapiens

Communities

COVID-19

Annotations

Pathway Ontology

disease pathway

Disease Ontology

COVID-19

Cell Type Ontology

vascular associated smooth muscle cell

Participants

Label Type Compact URI Comment
20-HETE Metabolite chebi:34306
Vitamin D3 Metabolite chebi:28940
bradykinin, des-arg(9) Metabolite chebi:133068
L-arginine Metabolite chebi:16467
Aldosterone Metabolite cas:52-39-1
Bradykinin Metabolite hmdb:HMDB0004246
Angiotensin II Metabolite hmdb:HMDB0001035
Angiotensin I Metabolite pubchem.compound:3081372
Ang 1-7 Metabolite chemspider:110354
Ang 1-9 Metabolite kegg.compound:C15851
Arachidonic acid Metabolite chebi:15843
Ca++ Metabolite hmdb:HMDB0000464
Guanosine triphosphate Metabolite chebi:15996
nitric oxide Metabolite chebi:16480
Cyclic guanosine monophosphate Metabolite chebi:16356
Prostaglandin E2 Metabolite cas:363-24-6
Prostaglandin I2 Metabolite cas:35121-78-9
SERPINE1 GeneProduct ncbigene:5054 SERPINE1 codes for plasminogen activator inhibitor-1 (PAI-1)
NFKB1 GeneProduct ensembl:ENSG00000109320
VDR GeneProduct ensembl:ENSG00000111424
MAPK1 GeneProduct ensembl:ENSG00000100030
SERPING1 GeneProduct ensembl:ENSG00000149131
CYP24A1 GeneProduct ensembl:ENSG00000019186
KLK1 GeneProduct ensembl:ENSG00000167748
F12 GeneProduct ensembl:ENSG00000131187
KLKB1 GeneProduct ensembl:ENSG00000164344
AGTR1 GeneProduct ncbigene:185
CPN1 GeneProduct ensembl:ENSG00000120054
AGTR2 GeneProduct ncbigene:186
BDKRB1 GeneProduct ncbigene:623
KNG1 GeneProduct ncbigene:3827
ACE GeneProduct ncbigene:1636
REN GeneProduct ncbigene:5972
ACE2 GeneProduct ncbigene:59272
AGT GeneProduct ncbigene:183
BDKRB2 GeneProduct ncbigene:624
CYP3A4 GeneProduct ensembl:ENSG00000160868
PRKG1 GeneProduct ensembl:ENSG00000185532
RHOA GeneProduct ensembl:ENSG00000067560
ROCK1 GeneProduct ensembl:ENSG00000067900
NOS1 GeneProduct ensembl:ENSG00000089250
NOS3 GeneProduct ensembl:ENSG00000164867
ACE2 GeneProduct ensembl:ENSG00000130234
TNF GeneProduct ensembl:ENSG00000232810
IL1A GeneProduct hgnc.symbol:IL1A
NFKB1 GeneProduct hgnc.symbol:NFKB1
IL1B GeneProduct hgnc.symbol:IL1B
Guanylate cyclase Protein uniprot:A0A140VJE6

References

  1. The control of protein phosphatase-1 by targetting subunits. The major myosin phosphatase in avian smooth muscle is a novel form of protein phosphatase-1. Alessi D, MacDougall LK, Sola MM, Ikebe M, Cohen P. Eur J Biochem. 1992 Dec 15;210(3):1023–35. PubMed Europe PMC Scholia
  2. Characterization of the receptor and the mechanisms underlying the inflammatory response induced by des-Arg9-BK in mouse pleurisy. Vianna RM, Calixto JB. Br J Pharmacol. 1998 Jan;123(2):281–91. PubMed Europe PMC Scholia
  3. Guanylate cyclase and the .NO/cGMP signaling pathway. Denninger JW, Marletta MA. Biochim Biophys Acta. 1999 May 5;1411(2–3):334–50. PubMed Europe PMC Scholia
  4. Pharmacogenetics of antihypertensive drug responses. Schwartz GL, Turner ST. Am J Pharmacogenomics. 2004;4(3):151–60. PubMed Europe PMC Scholia
  5. Effects of renin-angiotensin system inhibition on end-organ protection: can we do better? Weir MR. Clin Ther. 2007 Sep;29(9):1803–24. PubMed Europe PMC Scholia
  6. Role of bradykinin, nitric oxide, and angiotensin II type 2 receptor in imidapril-induced angiogenesis. Li P, Kondo T, Numaguchi Y, Kobayashi K, Aoki M, Inoue N, et al. Hypertension. 2008 Feb;51(2):252–8. PubMed Europe PMC Scholia
  7. Are we poised to target ACE2 for the next generation of antihypertensives? Ferreira AJ, Raizada MK. J Mol Med (Berl). 2008 Jun;86(6):685–90. PubMed Europe PMC Scholia
  8. Impaired Breakdown of Bradykinin and Its Metabolites as a Possible Cause for Pulmonary Edema in COVID-19 Infection. de Maat S, de Mast Q, Danser AHJ, van de Veerdonk FL, Maas C. Semin Thromb Hemost. 2020 Oct;46(7):835–7. PubMed Europe PMC Scholia
  9. COVID-19 and pneumonia: a role for the uPA/uPAR system. D’Alonzo D, De Fenza M, Pavone V. Drug Discov Today. 2020 Aug;25(8):1528–34. PubMed Europe PMC Scholia
  10. A mechanistic model and therapeutic interventions for COVID-19 involving a RAS-mediated bradykinin storm. Garvin MR, Alvarez C, Miller JI, Prates ET, Walker AM, Amos BK, et al. Elife. 2020 Jul 7;9:e59177. PubMed Europe PMC Scholia
  11. The role of kallikrein-kinin and renin-angiotensin systems in COVID-19 infection. Carvalho PR de, Sirois P, Fernandes PD. Peptides. 2021 Jan;135:170428. PubMed Europe PMC Scholia
  12. Endothelium Infection and Dysregulation by SARS-CoV-2: Evidence and Caveats in COVID-19. Bernard I, Limonta D, Mahal LK, Hobman TC. Viruses. 2020 Dec 26;13(1):29. PubMed Europe PMC Scholia