Proximal tubule transport (WP4917)
Homo sapiens
This pathway provides an overview of all active transport that occurs in the proximal tubule of the nephron in the kidneys. The proximal tubule plays roles in regulating the pH of the filtrate, secreting organic waste, and reabsorption of NaCl, a large variety of solutes, and amino acids from the filtrate back into the circulation. The apical side indicates the proximal tubule which contains the filtrate after passing through Bowman's capsule, which later becomes the urine after passing through the complete nephron, from which solutes are reabsorbed (taken back into the body) and into which waste is secreted. Impaired ability of reabsorption by the proximal tubule can lead to Fanconi syndrome.
Authors
Marvin Martens , Anna Baya Meuleman , Friederike Ehrhart , Finterly Hu , Eric Weitz , and Aishwarya IyerActivity
Discuss this pathway
Check for ongoing discussions or start your own.
Cited In
Are you planning to include this pathway in your next publication? See How to Cite and add a link here to your paper once it's online.
Organisms
Homo sapiensCommunities
Annotations
Pathway Ontology
transport pathwayCell Type Ontology
kidney cell epithelial cell of proximal tubuleDisease Ontology
Fanconi syndromeLabel | Type | Compact URI | Comment |
---|---|---|---|
Cys | Metabolite | chebi:17376 | |
organic anion | Metabolite | chebi:25696 | |
organic cation | Metabolite | chebi:25697 | |
Pro | Metabolite | chebi:26271 | |
oxalate(2−) | Metabolite | chebi:30623 | |
formate | Metabolite | chebi:15740 | |
I- | Metabolite | chebi:16382 | |
Lactate | Metabolite | chebi:24996 | |
Na+ | Metabolite | chebi:29101 | |
urate | Metabolite | chebi:46818 | |
Gly | Metabolite | chebi:15428 | |
Ala | Metabolite | chebi:16449 | |
HPO4 2- | Metabolite | chebi:43474 | |
OH- | Metabolite | chebi:16234 | |
Cationic amino acids | Metabolite | chebi:58942 | |
Amino acids | Metabolite | chebi:33709 | |
sulfate | Metabolite | chebi:16189 | |
hydrogencarbonate | Metabolite | chebi:17544 | |
α-ketoglutarate | Metabolite | chebi:16810 | |
K+ | Metabolite | chebi:29103 | |
H+ | Metabolite | chebi:15378 | |
Cl- | Metabolite | chebi:17996 | |
H2CO3 | Metabolite | chebi:28976 | |
H2O | Metabolite | chebi:15377 | |
CO2 | Metabolite | chebi:16526 | |
HCO3- | Metabolite | chebi:17544 | |
Glucose | Metabolite | chebi:17234 | |
Anionic amino acids | Metabolite | chebi:64898 | |
H2PO4- | Metabolite | chebi:39745 | |
H2PO4 - | Metabolite | chebi:39745 | |
SLC47A2 | GeneProduct | ensembl:ENSG00000180638 | |
ABCG2 | GeneProduct | ensembl:ENSG00000118777 | |
SLC7A8 | GeneProduct | ensembl:ENSG00000092068 | |
SLC47A1 | GeneProduct | ensembl:ENSG00000142494 | |
ATP6V0D2 | GeneProduct | ensembl:ENSG00000147614 | |
ATP6V0E1 | GeneProduct | ensembl:ENSG00000113732 | |
SLC22A2 | GeneProduct | ensembl:ENSG00000112499 | |
SLC7A9 | GeneProduct | ensembl:ENSG00000021488 | |
SLC5A2 | GeneProduct | ensembl:ENSG00000140675 | |
ATP1B1 | GeneProduct | ensembl:ENSG00000143153 | |
CA4 | GeneProduct | ensembl:ENSG00000167434 | |
SLC34A1 | GeneProduct | ensembl:ENSG00000131183 | |
ATP6V1D | GeneProduct | ensembl:ENSG00000100554 | |
SLC1A1 | GeneProduct | ensembl:ENSG00000106688 | |
SLC5A8 | GeneProduct | ensembl:ENSG00000256870 | |
SLC6A20 | GeneProduct | ensembl:ENSG00000163817 | |
SLC4A4 | GeneProduct | ensembl:ENSG00000080493 | |
ATP6V1H | GeneProduct | ensembl:ENSG00000047249 | |
SLC12A4 | GeneProduct | ensembl:ENSG00000124067 | |
ATP6V0A4 | GeneProduct | ensembl:ENSG00000105929 | |
ATP6V1A | GeneProduct | ensembl:ENSG00000114573 | |
SLC22A11 | GeneProduct | ensembl:ENSG00000168065 | |
SLC3A2 | GeneProduct | ensembl:ENSG00000168003 | |
TMEM27 | GeneProduct | ensembl:ENSG00000147003 | |
ATP6V0B | GeneProduct | ensembl:ENSG00000117410 | |
SLC16A10 | GeneProduct | ensembl:ENSG00000112394 | |
SLC2A1 | GeneProduct | ensembl:ENSG00000117394 | |
ATP6V1G1 | GeneProduct | ensembl:ENSG00000136888 | |
SLC34A3 | GeneProduct | ensembl:ENSG00000198569 | |
ABCC4 | GeneProduct | ensembl:ENSG00000125257 | |
ATP1A1 | GeneProduct | ensembl:ENSG00000163399 | |
SLC9A3 | GeneProduct | ensembl:ENSG00000066230 | |
ABCB1 | GeneProduct | ensembl:ENSG00000085563 | |
SLC5A5 | GeneProduct | ensembl:ENSG00000105641 | |
FXYD2 | GeneProduct | ensembl:ENSG00000137731 | |
SLC7A7 | GeneProduct | ensembl:ENSG00000155465 | |
SLC6A19 | GeneProduct | ensembl:ENSG00000174358 | |
ATP6V1F | GeneProduct | ensembl:ENSG00000128524 | |
ATP6V1B1 | GeneProduct | ensembl:ENSG00000116039 | |
SLC4A2 | GeneProduct | ensembl:ENSG00000164889 | |
SLC36A2 | GeneProduct | ensembl:ENSG00000186335 | |
ABCC2 | GeneProduct | ensembl:ENSG00000023839 | |
ATP6V1C1 | GeneProduct | ensembl:ENSG00000155097 | |
SLC6A18 | GeneProduct | ensembl:ENSG00000164363 | |
SLC2A2 | GeneProduct | ensembl:ENSG00000163581 | |
ATP6V1E1 | GeneProduct | ensembl:ENSG00000131100 | |
SLC26A6 | GeneProduct | ensembl:ENSG00000225697 | |
SLC20A2 | GeneProduct | ensembl:ENSG00000168575 | |
ATP6V0C | GeneProduct | ensembl:ENSG00000185883 | |
SLC3A1 | GeneProduct | ensembl:ENSG00000138079 | |
AQP1 | GeneProduct | ensembl:ENSG00000240583 | |
CA2 | GeneProduct | ensembl:ENSG00000104267 | |
SLC5A1 | GeneProduct | ensembl:ENSG00000100170 | |
SLC22A7 | GeneProduct | ensembl:ENSG00000137204 | |
SLC22A6 | GeneProduct | ensembl:ENSG00000197901 | |
SLC22A8 | GeneProduct | ensembl:ENSG00000149452 | |
SLC13A3 | GeneProduct | ensembl:ENSG00000158296 |
References
- Renal Physiology [Internet]. Koeppen BM, Stanton BA. Elsevier; 2018. 248 p. Available from: https://books.google.com/books/about/Renal_Physiology.html?hl=&id=yDFStgEACAAJ OpenLibrary Worldcat
- K-Cl cotransporter expression in the human kidney. Liapis H, Nag M, Kaji DM. Am J Physiol. 1998 Dec;275(6):C1432-7. PubMed Europe PMC Scholia
- Expression of slc5a8 in kidney and its role in Na(+)-coupled transport of lactate. Gopal E, Fei YJ, Sugawara M, Miyauchi S, Zhuang L, Martin P, et al. J Biol Chem. 2004 Oct 22;279(43):44522–32. PubMed Europe PMC Scholia
- Renal vacuolar H+-ATPase. Wagner CA, Finberg KE, Breton S, Marshansky V, Brown D, Geibel JP. Physiol Rev. 2004 Oct;84(4):1263–314. PubMed Europe PMC Scholia
- Essential roles of CFEX-mediated Cl(-)-oxalate exchange in proximal tubule NaCl transport and prevention of urolithiasis. Aronson PS. Kidney Int. 2006 Oct;70(7):1207–13. PubMed Europe PMC Scholia
- The role of carbonic anhydrases in renal physiology. Purkerson JM, Schwartz GJ. Kidney Int. 2007 Jan;71(2):103–15. PubMed Europe PMC Scholia
- Kidney amino acid transport. Verrey F, Singer D, Ramadan T, Vuille-dit-Bille RN, Mariotta L, Camargo SMR. Pflugers Arch. 2009 May;458(1):53–60. PubMed Europe PMC Scholia
- Acid-base transport by the renal proximal tubule. Skelton LA, Boron WF, Zhou Y. J Nephrol. 2010;23 Suppl 16(0 16):S4-18. PubMed Europe PMC Scholia
- Proximal tubule function and response to acidosis. Curthoys NP, Moe OW. Clin J Am Soc Nephrol. 2014 Sep 5;9(9):1627–38. PubMed Europe PMC Scholia
- The Na+/I- symporter (NIS): mechanism and medical impact. Portulano C, Paroder-Belenitsky M, Carrasco N. Endocr Rev. 2014 Feb;35(1):106–49. PubMed Europe PMC Scholia
- V-type ATPase proton pump expression during enamel formation. Sarkar J, Wen X, Simanian EJ, Paine ML. Matrix Biol. 2016;52–54:234–45. PubMed Europe PMC Scholia
- The Structure and Function of the Na,K-ATPase Isoforms in Health and Disease. Clausen MV, Hilbers F, Poulsen H. Front Physiol. 2017 Jun 6;8:371. PubMed Europe PMC Scholia