Type I interferon induction and signaling during SARS-CoV-2 infection (WP4868)
Homo sapiens
The induction of Type I interferons and signaling is the first response leading to the innate immune reactions during SARS-COV-2 infection. The virus can enter host cells through two mechanisms. If it enters the cell via diffusion mediated by TMPRSS2, the virus ssRNA will be detected by RIG-I and MDA5 in the cytosol. If the virus enters the cell via endocytosis, the spike proteins will be processed by CTSL in the lysosome leading to the detection of ssRNA by TLR3,7 and 9 (PMID 33506952). The extracellular virus can also be detected by TLR2,4 and 6 (PMID 33506952). The higher production of TLR4 in men and the presence of TLR7 on the X chromosome may contribute to the different responses between women and men during SARS-CoV 2 infection (PMID 33506952). TLR7 MYD88-dependent signaling is inhibited at multiple steps by the SARS-CoV Papain-Like Protease (PLpro) domain of nsp3 (red oval). The signaling pathway is critical to induction of type I interferons (INF-I) via IRF3, AP-1 and NFkB transcription factors. INF-I triggers the JAK/STAT pathway leading to the induction of interferon-stimulated genes (ISGs), such as OAS and PKR, which go one to conduct the innate immune response. TREML4 has been shown to be necessary for MYD88 recruitment by TLR7 and STAT1 participation. The inhibition of SARS-CoV-2 PLpro by GRL0617 is proposed based on Ratia, et al. 2008 and 100% sequence identity between SARS-CoV and SARS-CoV-2 across all 13 residues of PLpro involved in binding GRL0617 (82.9% identity across 316 amino acids) as determined by the alignment of RefSeq YP_009725299.1 and PDB 3E9S (https://alexanderpico.github.io/SARS-CoV-2_Alignments/#Nsp3_PLpro_domain). The antimicrobial agent, azithromycin, is in clincal trials as COVID-19 therapy in combination with hydroxychloroquine (Gautret 2020) has been shown to modulate inflammation by inhibiting the activation of many of these same transcription factors.
Authors
Alex Pico , Egon Willighagen , Friederike Ehrhart , Nhung Pham , Denise Slenter , Anna Niarakis , Eric Weitz , Finterly Hu , and Martina Summer-KutmonActivity
Discuss this pathway
Check for ongoing discussions or start your own.
Cited In
- Tissue-specific pathway activities: A retrospective analysis in COVID-19 patients (2022).
- Bioinformatics and systems-biology analysis to determine the effects of Coronavirus disease 2019 on patients with allergic asthma (2022).
- Discovering common pathogenetic processes between COVID-19 and tuberculosis by bioinformatics and system biology approach (2023).
- Combination of Enrichment Using Gene Ontology and Transcriptomic Analysis Revealed Contribution of Interferon Signaling to Severity of COVID-19 (2022).
- Fibrin drives thromboinflammation and neuropathology in COVID-19 (2024).
- Longitudinal Neuropathological Consequences of Extracranial Radiation Therapy in Mice (2024).
- Longitudinal Neuropathological Consequences of Extracranial Radiation Therapy in Mice (2024).
- Parallel use of human stem cell lung and heart models provide insights for SARS-CoV-2 treatment (2023).
Are you planning to include this pathway in your next publication? See How to Cite and add a link here to your paper once it's online.
Organisms
Homo sapiensCommunities
COVID-19Annotations
Disease Ontology
viral infectious disease COVID-19 severe acute respiratory syndromePathway Ontology
signaling pathway type I interferon signaling pathwayLabel | Type | Compact URI | Comment |
---|---|---|---|
GRL0617 | Metabolite | wikidata:Q27097846 | |
Azithromycin | Metabolite | wikidata:Q165399 | |
IKBKE | GeneProduct | ensembl:ENSG00000263528 | |
IRF3 | GeneProduct | ensembl:ENSG00000126456 | |
TRAF6 | GeneProduct | ensembl:ENSG00000175104 | |
MYD88 | GeneProduct | ensembl:ENSG00000172936 | |
TRAF3 | GeneProduct | ensembl:ENSG00000131323 | |
TBK1 | GeneProduct | ensembl:ENSG00000183735 | |
JAK1 | GeneProduct | ensembl:ENSG00000162434 | |
OAS1 | GeneProduct | ensembl:ENSG00000089127 | |
PKR | GeneProduct | ensembl:ENSG00000055332 | |
IFNAR1 | GeneProduct | ensembl:ENSG00000142166 | |
IFNAR2 | GeneProduct | ensembl:ENSG00000159110 | |
TYK2 | GeneProduct | ensembl:ENSG00000105397 | |
STAT1 | GeneProduct | ensembl:ENSG00000115415 | |
STAT2 | GeneProduct | ensembl:ENSG00000170581 | |
IRF9 | GeneProduct | ensembl:ENSG00000213928 | |
OAS2 | GeneProduct | ensembl:ENSG00000111335 | |
OAS3 | GeneProduct | ensembl:ENSG00000111331 | |
ACE2 | GeneProduct | uniprot:Q9BYF1 | |
TLR7 | GeneProduct | ensembl:ENSG00000196664 | |
IRF7 | GeneProduct | ensembl:ENSG00000185507 | |
TLR3 | Protein | uniprot:O15455 | |
TLR9 | Protein | uniprot:Q9NR96 | |
MDA5 | Protein | ensembl:ENSG00000115267 | |
TREML4 | Protein | uniprot:Q6UXN2 | |
RIG-I (DDX58) | Protein | ensembl:ENSG00000107201 | |
TMPRSS2 | Protein | uniprot:O15393 | |
TLR2 | Protein | uniprot:O60603 | |
IRAK4 | Protein | ensembl:ENSG00000198001 | |
MAVS | Protein | ensembl:ENSG00000088888 | |
PLpro (nsp3) | Protein | refseq:YP_009725299.1 | |
INF-I alpha/ beta | Protein | wikidata:Q6046488 | |
nsp13 | Protein | refseq:QII57165.1 | PDB structure for SARS-CoV strain: 6JYT |
TLR6 | Protein | uniprot:Q9Y2C9 | |
TLR4 | Protein | uniprot:O00206 | |
nsp1 | Protein | ncbiprotein:YP_009725297 | PDB structure for SARS-CoV strain: 6JYT |
nsp10 | Protein | ncbiprotein:YP_009725306 | PDB structure for SARS-CoV strain: 6JYT |
nsp14 | Protein | ncbiprotein:YP_009725309 | PDB structure for SARS-CoV strain: 6JYT |
nsp15 | Protein | ncbiprotein:YP_009725310 | PDB structure for SARS-CoV strain: 6JYT |
nsp16 | Protein | ncbiprotein:YP_009725311 | PDB structure for SARS-CoV strain: 6JYT |
orf3a | Protein | uniprot:P0DTC3 | PDB structure for SARS-CoV strain: 6JYT |
orf6 | Protein | uniprot:P0DTC6 | PDB structure for SARS-CoV strain: 6JYT |
References
- Azithromycin suppresses activation of nuclear factor-kappa B and synthesis of pro-inflammatory cytokines in tracheal aspirate cells from premature infants. Aghai ZH, Kode A, Saslow JG, Nakhla T, Farhath S, Stahl GE, et al. Pediatr Res. 2007 Oct;62(4):483–8. PubMed Europe PMC Scholia
- A noncovalent class of papain-like protease/deubiquitinase inhibitors blocks SARS virus replication. Ratia K, Pegan S, Takayama J, Sleeman K, Coughlin M, Baliji S, et al. Proc Natl Acad Sci U S A. 2008 Oct 21;105(42):16119–24. PubMed Europe PMC Scholia
- Azithromycin suppresses interleukin-12p40 expression in lipopolysaccharide and interferon-gamma stimulated macrophages. Yamauchi K, Shibata Y, Kimura T, Abe S, Inoue S, Osaka D, et al. Int J Biol Sci. 2009 Oct 23;5(7):667–78. PubMed Europe PMC Scholia
- Pharmacological targets in the ubiquitin system offer new ways of treating cancer, neurodegenerative disorders and infectious diseases. Edelmann MJ, Nicholson B, Kessler BM. Expert Rev Mol Med. 2011 Nov 17;13:e35. PubMed Europe PMC Scholia
- The receptor TREML4 amplifies TLR7-mediated signaling during antiviral responses and autoimmunity. Ramirez-Ortiz ZG, Prasad A, Griffith JW, Pendergraft WF 3rd, Cowley GS, Root DE, et al. Nat Immunol. 2015 May;16(5):495–504. PubMed Europe PMC Scholia
- Azithromycin treatment modifies airway and blood gene expression networks in neutrophilic COPD. Baines KJ, Wright TK, Gibson PG, Powell H, Hansbro PM, Simpson JL. ERJ Open Res. 2018 Nov 5;4(4):00031–2018. PubMed Europe PMC Scholia
- Human Coronavirus: Host-Pathogen Interaction. Fung TS, Liu DX. Annu Rev Microbiol. 2019 Sep 8;73:529–57. PubMed Europe PMC Scholia
- Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Gautret P, Lagier JC, Parola P, Hoang VT, Meddeb L, Mailhe M, et al. Int J Antimicrob Agents. 2020 Jul;56(1):105949. PubMed Europe PMC Scholia
- Deciphering the Role of Host Genetics in Susceptibility to Severe COVID-19. Carter-Timofte ME, Jørgensen SE, Freytag MR, Thomsen MM, Brinck Andersen NS, Al-Mousawi A, et al. Front Immunol. 2020 Jun 30;11:1606. PubMed Europe PMC Scholia
- Interplay between SARS-CoV-2 and the type I interferon response. Sa Ribero M, Jouvenet N, Dreux M, Nisole S. PLoS Pathog. 2020 Jul 29;16(7):e1008737. PubMed Europe PMC Scholia
- Activation and evasion of type I interferon responses by SARS-CoV-2. Lei X, Dong X, Ma R, Wang W, Xiao X, Tian Z, et al. Nat Commun. 2020 Jul 30;11(1):3810. PubMed Europe PMC Scholia
- Evasion of Type I Interferon by SARS-CoV-2. Xia H, Cao Z, Xie X, Zhang X, Chen JYC, Wang H, et al. Cell Rep. 2020 Oct 6;33(1):108234. PubMed Europe PMC Scholia
- Antagonism of Type I Interferon by Severe Acute Respiratory Syndrome Coronavirus 2. Xia H, Shi PY. J Interferon Cytokine Res. 2020 Dec;40(12):543–8. PubMed Europe PMC Scholia
- Role of Toll-like receptors in the pathogenesis of COVID-19. Khanmohammadi S, Rezaei N. J Med Virol. 2021 May;93(5):2735–9. PubMed Europe PMC Scholia
- SARS-CoV-2 tropism, entry, replication, and propagation: Considerations for drug discovery and development. Murgolo N, Therien AG, Howell B, Klein D, Koeplinger K, Lieberman LA, et al. PLoS Pathog. 2021 Feb 17;17(2):e1009225. PubMed Europe PMC Scholia