Metabolism of dichloroethylene by CYP450 (WP3666)

Homo sapiens

This pathway describes the metabolism of dichloroethylene by Cytochrome P450 enzymes. Source: [http://www.kegg.jp/pathway/ko00980 KEGG Metabolism of xenobiotics by cytochrome P450].

Authors

Jacob Windsor , Kristina Hanspers , Friederike Ehrhart , Egon Willighagen , Elisa Cirillo , Martina Summer-Kutmon , and Eric Weitz

Activity

last edited

Discuss this pathway

Check for ongoing discussions or start your own.

Cited In

Are you planning to include this pathway in your next publication? See How to Cite and add a link here to your paper once it's online.

Organisms

Homo sapiens

Communities

Annotations

Pathway Ontology

classic metabolic pathway

Participants

Label Type Compact URI Comment
2-S-Glutathionyl acetate Metabolite pubchem.compound:11954071
Chloroacetic acid Metabolite hmdb:HMDB0031331
S-(2-Chloroacetyl)glutathione Metabolite hmdb:HMDB0060505
2-(S-Glutathionyl)acetyl chloride Metabolite hmdb:HMDB0060342
2,2-dichloro-1,1-ethanediol Metabolite pubchem.compound:85275
1,1-Dichloroethylene Metabolite pubchem.compound:6366
1,1-Dichloroethylene epoxide Metabolite hmdb:HMDB0060333
Chloroacetyl chloride Metabolite hmdb:HMDB0060452
S-(2,2-dichloro-1-hydroxy)-1-ethyl glutathione Metabolite pubchem.compound:11954070
2,2-Dichloroacetaldehyde Metabolite hmdb:HMDB0060357
CYP2E1 GeneProduct ensembl:ENSG00000130649
glutathione S-transferase Protein kegg.genes:119391

References

  1. Possible mechanism of liver necrosis caused by aromatic organic compounds. Brodie BB, Reid WD, Cho AK, Sipes G, Krishna G, Gillette JR. Proc Natl Acad Sci U S A. 1971 Jan;68(1):160–4. PubMed Europe PMC Scholia
  2. Urinary thiodiacetic acid. A selective biomarker for the cytochrome P450-catalyzed oxidation of 1,2-dibromoethane in the rat. Wormhoudt LW, Commandeur JN, Ploemen JH, Abdoelgafoer RS, Makansi A, Van Bladeren PJ, et al. Drug Metab Dispos. 1997 Apr;25(4):508–15. PubMed Europe PMC Scholia
  3. Glutathione conjugation of electrophilic metabolites of 1-nitronaphthalene in rat tracheobronchial airways and liver: identification by mass spectrometry and proton nuclear magnetic resonance spectroscopy. Watt KC, Morin DM, Kurth MJ, Mercer RS, Plopper CG, Buckpitt AR. Chem Res Toxicol. 1999 Sep;12(9):831–9. PubMed Europe PMC Scholia
  4. Metabolism and disposition of [(14)C]1-nitronaphthalene in male Sprague-Dawley rats. Halladay JS, Sauer JM, Sipes IG. Drug Metab Dispos. 1999 Dec;27(12):1456–65. PubMed Europe PMC Scholia
  5. Role of quinones in toxicology. Bolton JL, Trush MA, Penning TM, Dryhurst G, Monks TJ. Chem Res Toxicol. 2000 Mar;13(3):135–60. PubMed Europe PMC Scholia
  6. Naphthalene-induced respiratory tract toxicity: metabolic mechanisms of toxicity. Buckpitt A, Boland B, Isbell M, Morin D, Shultz M, Baldwin R, et al. Drug Metab Rev. 2002 Nov;34(4):791–820. PubMed Europe PMC Scholia
  7. Benzo(a)pyrene diolepoxide (BPDE)-DNA adduct levels in leukocytes of smokers in relation to polymorphism of CYP1A1, GSTM1, GSTP1, GSTT1, and mEH. Lodovici M, Luceri C, Guglielmi F, Bacci C, Akpan V, Fonnesu ML, et al. Cancer Epidemiol Biomarkers Prev. 2004 Aug;13(8):1342–8. PubMed Europe PMC Scholia
  8. Bioactivation of 1,1-dichloroethylene to its epoxide by CYP2E1 and CYP2F enzymes. Simmonds AC, Reilly CA, Baldwin RM, Ghanayem BI, Lanza DL, Yost GS, et al. Drug Metab Dispos. 2004 Sep;32(9):1032–9. PubMed Europe PMC Scholia
  9. Pulmonary bioactivation of trichloroethylene to chloral hydrate: relative contributions of CYP2E1, CYP2F, and CYP2B1. Forkert PG, Baldwin RM, Millen B, Lash LH, Putt DA, Shultz MA, et al. Drug Metab Dispos. 2005 Oct;33(10):1429–37. PubMed Europe PMC Scholia