Spinal cord injury (WP2431)
Homo sapiens
This pathway provides an overview of cell types, therapeutic targets, drugs, new proposed targets and pathways implicated in spinal cord injury. Spinal cord injury is a complex multistep process that involves the regulation of gene expression and signaling in motor neurons, oligodentrocytes, microglia, and astrocytes that trigger immediate immune responses lasting several weeks. Within 24 hours, chemoattractants and cytokines released from the site of injury activate neutrophils which further recruit B and T cells or recruit monocytes that ultimately result in infiltration and activation by microglia and macrophages. These immune responses result in inflammation, excitotoxicity, cell death, formation of glial scar, and suppression of axonal regeneration. An increase in the expression of cell cycle genes further results in proliferation of astrocytes and microglia that leads to apoptosis and necrosis of oligodentrocytes and neurons. An example therapy is the administration of the immunosuppressant FK506, also used in transplantation to offer neuroprotection. Proteins on this pathway have targeted assays available via the [https://assays.cancer.gov/available_assays?wp_id=WP2431 CPTAC Assay Portal].
Authors
Deborah Micael , Nathan Salomonis , Egon Willighagen , Anders Riutta , Martina Summer-Kutmon , Chris Evelo , Zahra Roudbari , Kristina Hanspers , Linda Rieswijk , Denise Slenter , Eric Weitz , and Susan CoortActivity
Discuss this pathway
Check for ongoing discussions or start your own.
Cited In
- Identifying Drug-Induced Liver Injury Associated With Inflammation-Drug and Drug-Drug Interactions in Pharmacologic Treatments for COVID-19 by Bioinformatics and System Biology Analyses: The Role of Pregnane X Receptor (2022).
- Identification of potential drug targets for vascular dementia and carotid plaques by analyzing underlying molecular signatures shared by them (2022).
Are you planning to include this pathway in your next publication? See How to Cite and add a link here to your paper once it's online.
Organisms
Homo sapiensCommunities
Diseases ExRNAAnnotations
Cell Type Ontology
motor neuron T cell monocyte macrophage oligodendrocyte neutrophil spinal cord motor neuron microglial cell astrocyte of the spinal cord B cellDisease Ontology
post-traumatic stress disorder spinal cord diseasePathway Ontology
neurological disorder pathway disease pathwayReferences
- Role of cyclooxygenase 2 in acute spinal cord injury. Resnick DK, Graham SH, Dixon CE, Marion DW. J Neurotrauma. 1998 Dec;15(12):1005–13. PubMed Europe PMC Scholia
- Improved recovery after spinal cord trauma in ICAM-1 and P-selectin knockout mice. Farooque M, Isaksson J, Olsson Y. Neuroreport. 1999 Jan 18;10(1):131–4. PubMed Europe PMC Scholia
- Glial fibrillary acidic protein: GFAP-thirty-one years (1969-2000). Eng LF, Ghirnikar RS, Lee YL. Neurochem Res. 2000 Oct;25(9–10):1439–51. PubMed Europe PMC Scholia
- A neutrophil elastase inhibitor (ONO-5046) reduces neurologic damage after spinal cord injury in rats. Tonai T, Shiba K, Taketani Y, Ohmoto Y, Murata K, Muraguchi M, et al. J Neurochem. 2001 Sep;78(5):1064–72. PubMed Europe PMC Scholia
- AIF-1 expression defines a proliferating and alert microglial/macrophage phenotype following spinal cord injury in rats. Schwab JM, Frei E, Klusman I, Schnell L, Schwab ME, Schluesener HJ. J Neuroimmunol. 2001 Oct 1;119(2):214–22. PubMed Europe PMC Scholia
- Gene profiling in spinal cord injury shows role of cell cycle in neuronal death. Di Giovanni S, Knoblach SM, Brandoli C, Aden SA, Hoffman EP, Faden AI. Ann Neurol. 2003 Apr;53(4):454–68. PubMed Europe PMC Scholia
- Axonal plasticity and functional recovery after spinal cord injury in mice deficient in both glial fibrillary acidic protein and vimentin genes. Menet V, Prieto M, Privat A, Giménez y Ribotta M. Proc Natl Acad Sci U S A. 2003 Jul 22;100(15):8999–9004. PubMed Europe PMC Scholia
- Stimulation of production of glial cell line-derived neurotrophic factor and nitric oxide by lipopolysaccharide with different dose-responsiveness in cultured rat macrophages. Hashimoto M, Ito T, Fukumitsu H, Nomoto H, Furukawa Y, Furukawa S. Biomed Res. 2005 Oct;26(5):223–9. PubMed Europe PMC Scholia
- Macrophage migration inhibitory factor induces cell death and decreases neuronal nitric oxide expression in spinal cord neurons. Chalimoniuk M, King-Pospisil K, Metz CN, Toborek M. Neuroscience. 2006;139(3):1117–28. PubMed Europe PMC Scholia
- Decoy peptides that bind dynorphin noncovalently prevent NMDA receptor-mediated neurotoxicity. Woods AS, Kaminski R, Oz M, Wang Y, Hauser K, Goody R, et al. J Proteome Res. 2006 Apr;5(4):1017–23. PubMed Europe PMC Scholia
- Accumulation of the inhibitory receptor EphA4 may prevent regeneration of corticospinal tract axons following lesion. Fabes J, Anderson P, Yáñez-Muñoz RJ, Thrasher A, Brennan C, Bolsover S. Eur J Neurosci. 2006 Apr;23(7):1721–30. PubMed Europe PMC Scholia
- Attenuation of astrogliosis by suppressing of microglial proliferation with the cell cycle inhibitor olomoucine in rat spinal cord injury model. Tian D shi, Dong Q, Pan D ji, He Y, Yu Z yuan, Xie M jie, et al. Brain Res. 2007 Jun 18;1154:206–14. PubMed Europe PMC Scholia
- Inhibiting epidermal growth factor receptor improves structural, locomotor, sensory, and bladder recovery from experimental spinal cord injury. Erschbamer M, Pernold K, Olson L. J Neurosci. 2007 Jun 13;27(24):6428–35. PubMed Europe PMC Scholia
- TNF-alpha blockage in a mouse model of SCI: evidence for improved outcome. Genovese T, Mazzon E, Crisafulli C, Di Paola R, Muià C, Esposito E, et al. Shock. 2008 Jan;29(1):32–41. PubMed Europe PMC Scholia
- Neuropsin promotes oligodendrocyte death, demyelination and axonal degeneration after spinal cord injury. Terayama R, Bando Y, Murakami K, Kato K, Kishibe M, Yoshida S. Neuroscience. 2007 Aug 10;148(1):175–87. PubMed Europe PMC Scholia
- Caspase-3 activity is reduced after spinal cord injury in mice lacking dynorphin: differential effects on glia and neurons. Adjan VV, Hauser KF, Bakalkin G, Yakovleva T, Gharibyan A, Scheff SW, et al. Neuroscience. 2007 Sep 7;148(3):724–36. PubMed Europe PMC Scholia
- The p75 neurotrophin receptor is essential for neuronal cell survival and improvement of functional recovery after spinal cord injury. Chu GKT, Yu W, Fehlings MG. Neuroscience. 2007 Sep 7;148(3):668–82. PubMed Europe PMC Scholia
- Annexin A1 reduces inflammatory reaction and tissue damage through inhibition of phospholipase A2 activation in adult rats following spinal cord injury. Liu NK, Zhang YP, Han S, Pei J, Xu LY, Lu PH, et al. J Neuropathol Exp Neurol. 2007 Oct;66(10):932–43. PubMed Europe PMC Scholia
- Greatly improved neurological outcome after spinal cord compression injury in AQP4-deficient mice. Saadoun S, Bell BA, Verkman AS, Papadopoulos MC. Brain. 2008 Apr;131(Pt 4):1087–98. PubMed Europe PMC Scholia
- Alterations in the expression of the apurinic/apyrimidinic endonuclease-1/redox factor-1 (APE/ref-1) and DNA damage in the caudal region of acute and chronic spinal cord injured rats treated by embryonic neural stem cells. Dagci T, Armagan G, Konyalioglu S, Yalcin A. Physiol Res. 2009;58(3):427–34. PubMed Europe PMC Scholia
- Effects of long-term FK506 administration on functional and histopathological outcome after spinal cord injury in adult rat. Saganová K, Orendácová J, Sulla I Jr, Filipcík P, Cízková D, Vanický I. Cell Mol Neurobiol. 2009 Sep;29(6–7):1045–51. PubMed Europe PMC Scholia
- Pathogenic antibodies are active participants in spinal cord injury. Dekaban GA, Thawer S. J Clin Invest. 2009 Oct;119(10):2881–4. PubMed Europe PMC Scholia
- Astrocytes initiate inflammation in the injured mouse spinal cord by promoting the entry of neutrophils and inflammatory monocytes in an IL-1 receptor/MyD88-dependent fashion. Pineau I, Sun L, Bastien D, Lacroix S. Brain Behav Immun. 2010 May;24(4):540–53. PubMed Europe PMC Scholia
- Eph receptor tyrosine kinases regulate astrocyte cytoskeletal rearrangement and focal adhesion formation. Puschmann TB, Turnley AM. J Neurochem. 2010 May;113(4):881–94. PubMed Europe PMC Scholia
- The LTB4-BLT1 axis mediates neutrophil infiltration and secondary injury in experimental spinal cord injury. Saiwai H, Ohkawa Y, Yamada H, Kumamaru H, Harada A, Okano H, et al. Am J Pathol. 2010 May;176(5):2352–66. PubMed Europe PMC Scholia
- 2-Methoxyestradiol inhibits the up-regulation of AQP4 and AQP1 expression after spinal cord injury. Wang Y feng, Fan Z kai, Cao Y, Yu D shui, Zhang Y qiang, Wang Y song. Brain Res. 2011 Jan 25;1370:220–6. PubMed Europe PMC Scholia
- CD47 knockout mice exhibit improved recovery from spinal cord injury. Myers SA, DeVries WH, Andres KR, Gruenthal MJ, Benton RL, Hoying JB, et al. Neurobiol Dis. 2011 Apr;42(1):21–34. PubMed Europe PMC Scholia
- Sustained delivery of activated Rho GTPases and BDNF promotes axon growth in CSPG-rich regions following spinal cord injury. Jain A, McKeon RJ, Brady-Kalnay SM, Bellamkonda RV. PLoS One. 2011 Jan 24;6(1):e16135. PubMed Europe PMC Scholia
- Current and future therapeutic strategies for functional repair of spinal cord injury. Tohda C, Kuboyama T. Pharmacol Ther. 2011 Oct;132(1):57–71. PubMed Europe PMC Scholia
- Prevention of both neutrophil and monocyte recruitment promotes recovery after spinal cord injury. Lee SM, Rosen S, Weinstein P, van Rooijen N, Noble-Haeusslein LJ. J Neurotrauma. 2011 Sep;28(9):1893–907. PubMed Europe PMC Scholia
- Repertoire of microglial and macrophage responses after spinal cord injury. David S, Kroner A. Nat Rev Neurosci. 2011 Jun 15;12(7):388–99. PubMed Europe PMC Scholia
- Phospholipase A2 superfamily members play divergent roles after spinal cord injury. López-Vales R, Ghasemlou N, Redensek A, Kerr BJ, Barbayianni E, Antonopoulou G, et al. FASEB J. 2011 Dec;25(12):4240–52. PubMed Europe PMC Scholia
- Activated microglia inhibit axonal growth through RGMa. Kitayama M, Ueno M, Itakura T, Yamashita T. PLoS One. 2011;6(9):e25234. PubMed Europe PMC Scholia
- Critical role of connexin 43 in secondary expansion of traumatic spinal cord injury. Huang C, Han X, Li X, Lam E, Peng W, Lou N, et al. J Neurosci. 2012 Mar 7;32(10):3333–8. PubMed Europe PMC Scholia
- Acute leptin treatment enhances functional recovery after spinal cord injury. Fernández-Martos CM, González P, Rodriguez FJ. PLoS One. 2012;7(4):e35594. PubMed Europe PMC Scholia
- PlexinA2 limits recovery from corticospinal axotomy by mediating oligodendrocyte-derived Sema6A growth inhibition. Shim SO, Cafferty WBJ, Schmidt EC, Kim BG, Fujisawa H, Strittmatter SM. Mol Cell Neurosci. 2012 Jun;50(2):193–200. PubMed Europe PMC Scholia
- Immunosuppressant FK506: focusing on neuroprotective effects following brain and spinal cord injury. Saganová K, Gálik J, Blaško J, Korimová A, Račeková E, Vanický I. Life Sci. 2012 Aug 21;91(3–4):77–82. PubMed Europe PMC Scholia
- Induction of neuronal phenotypes from NG2+ glial progenitors by inhibiting epidermal growth factor receptor in mouse spinal cord injury. Ju P, Zhang S, Yeap Y, Feng Z. Glia. 2012 Nov;60(11):1801–14. PubMed Europe PMC Scholia
- Characterization of inflammatory gene expression and galectin-3 function after spinal cord injury in mice. Pajoohesh-Ganji A, Knoblach SM, Faden AI, Byrnes KR. Brain Res. 2012 Sep 26;1475:96–105. PubMed Europe PMC Scholia
- FOXO3a/p27kip1 expression and essential role after acute spinal cord injury in adult rat. Zhang S, Huan W, Wei H, Shi J, Fan J, Zhao J, et al. J Cell Biochem. 2013 Feb;114(2):354–65. PubMed Europe PMC Scholia
- p53 Regulates the neuronal intrinsic and extrinsic responses affecting the recovery of motor function following spinal cord injury. Floriddia EM, Rathore KI, Tedeschi A, Quadrato G, Wuttke A, Lueckmann JM, et al. J Neurosci. 2012 Oct 3;32(40):13956–70. PubMed Europe PMC Scholia
- Molecular targeting of NOX4 for neuropathic pain after traumatic injury of the spinal cord. Im YB, Jee MK, Choi JI, Cho HT, Kwon OH, Kang SK. Cell Death Dis. 2012 Nov 15;3(11):e426. PubMed Europe PMC Scholia