Benzo(a)pyrene metabolism (WP696)

Homo sapiens

Benzene metabolism primarily takes place in the liver, to a variety of products that are transported to the bone marrow where additional metabolism occurs. Several metabolites of benzene are responsible for the toxic effects of benzene including reactive metabolites that covalently bind macromolecules and induce oxidative damage. Proteins on this pathway have targeted assays available via the [https://assays.cancer.gov/available_assays?wp_id=WP696 CPTAC Assay Portal]

Authors

Pieter Giesbertz , Thomas Kelder , Martijn Van Iersel , Christine Chichester , Egon Willighagen , Martina Summer-Kutmon , Alex Pico , and Kristina Hanspers

Activity

last edited

Discuss this pathway

Check for ongoing discussions or start your own.

Cited In

Are you planning to include this pathway in your next publication? See How to Cite and add a link here to your paper once it's online.

Organisms

Homo sapiens

Communities

Annotations

Pathway Ontology

benzo(a)pyrene metabolic pathway cellular detoxification pathway xenobiotics biodegradation pathway

Participants

Label Type Compact URI Comment
Benzo[a]pyrene-9-sulfate Metabolite pubchem.compound:149850
7,8-dihydroxy-7,8-dihydro-benzo[a]pyrene Metabolite chemspider:24123
Benzo[a]pyrene-7,8-dione Metabolite pubchem.compound:105020
Benzo[a]pyrene Metabolite pubchem.compound:2336
Benzo[a]pyrene-7-sulfate Metabolite pubchem.compound:23703977
9,10-epoxy-7,8-dihydroxy-7,8-dihydro-benzo[a]pyrene Metabolite chemspider:46738
Benzo[a]pyrene-1,6-dione Metabolite pubchem.compound:18300
CYP3A4 GeneProduct ensembl:ENSG00000160868
AKR1C2 GeneProduct ensembl:ENSG00000151632
AKR1C3 GeneProduct ensembl:ENSG00000196139
CYP1A1 GeneProduct ensembl:ENSG00000140465
AKR1A1 GeneProduct ensembl:ENSG00000117448
EPHX1 GeneProduct ensembl:ENSG00000143819
AKR1C4 GeneProduct ensembl:ENSG00000198610
AKR1C1 GeneProduct ensembl:ENSG00000187134
CYP1B1 GeneProduct ensembl:ENSG00000138061

References

  1. Peroxidative metabolism of carcinogenic N-arylhydroxamic acids: implications for tumorigenesis. Malejka-Giganti D, Ritter CL. Environ Health Perspect. 1994 Oct;102 Suppl 6(Suppl 6):75–81. PubMed Europe PMC Scholia
  2. An overview of benzene metabolism. Snyder R, Hedli CC. Environ Health Perspect. 1996 Dec;104 Suppl 6(Suppl 6):1165–71. PubMed Europe PMC Scholia
  3. Epoxidation of benzo[a]pyrene-7,8-dihydrodiol by human CYP1A1 in reconstituted membranes. Effects of charge and nonbilayer phase propensity of the membrane. Kisselev P, Schwarz D, Platt KL, Schunck WH, Roots I. Eur J Biochem. 2002 Apr;269(7):1799–805. PubMed Europe PMC Scholia
  4. Analysis of DNA and protein adducts of benzo[a]pyrene in human tissues using structure-specific methods. Boysen G, Hecht SS. Mutat Res. 2003 Jan;543(1):17–30. PubMed Europe PMC Scholia
  5. Nature and nurture - lessons from chemical carcinogenesis. Luch A. Nat Rev Cancer. 2005 Feb;5(2):113–25. PubMed Europe PMC Scholia
  6. Aldo-keto reductases and bioactivation/detoxication. Jin Y, Penning TM. Annu Rev Pharmacol Toxicol. 2007;47:263–92. PubMed Europe PMC Scholia
  7. Metabolism of benzo[a]pyrene in human bronchoalveolar H358 cells using liquid chromatography-mass spectrometry. Jiang H, Gelhaus SL, Mangal D, Harvey RG, Blair IA, Penning TM. Chem Res Toxicol. 2007 Sep;20(9):1331–41. PubMed Europe PMC Scholia