Bardet-Biedl syndrome (WP5234)

Homo sapiens

Bardet-Biedl Syndrome is a rare autosomal recessive genetic disorder. Most individuals carry mutations encoding for the intraflagellar transport complex, especially the BBSome complex and assembly or functional proteins within the primary cilium. These mutations lead to multisystemic ciliopathies, commonly characterized by rod-cone dystrophy, obesity, postaxial polydactyly, cognitive impairment, hypogonadotropic hypogonadism, genitourinary malformations, renal malformation and/or renal parenchymal disease. The syndrome has a prevalence of 1:125 000 to 1:160 000 in the Western hemisphere and a higher prevalence in isolated communities like Newfoundland 1:17 500 or Arabic regions 1:13 500 to 1:65 000 cases.

Authors

Susan M. Bachmann , Friederike Ehrhart , Egon Willighagen , and Eric Weitz

Activity

last edited

Discuss this pathway

Check for ongoing discussions or start your own.

Cited In

Are you planning to include this pathway in your next publication? See How to Cite and add a link here to your paper once it's online.

Organisms

Homo sapiens

Communities

Rare Diseases

Annotations

Disease Ontology

ciliopathy Bardet-Biedl syndrome

Pathway Ontology

disease pathway

Participants

Label Type Compact URI Comment
IFT27 GeneProduct ensembl:ENSG00000100360 BBS19
IFT74 GeneProduct ensembl:ENSG00000096872 BBS22
IFT172 GeneProduct ensembl:ENSG00000138002 BBS20
IFT80 GeneProduct ensembl:ENSG00000068885
SCAPER GeneProduct uniprot:H3BU24
ARNTL GeneProduct ensembl:ENSG00000133794
EFHC2 GeneProduct ensembl:ENSG00000183690
BBS5 GeneProduct ensembl:ENSG00000163093
CEP164 GeneProduct ensembl:ENSG00000110274
CEP290 GeneProduct ensembl:ENSG00000198707 BBS14
BBIP1 GeneProduct ensembl:ENSG00000214413 BBS18
BBS9 GeneProduct ensembl:ENSG00000122507
TMEM67 GeneProduct ensembl:ENSG00000164953
TRIM32 GeneProduct ensembl:ENSG00000119401 BBS11
FUZ GeneProduct ensembl:ENSG00000010361
CRX GeneProduct ensembl:ENSG00000105392
ZIC2 GeneProduct ensembl:ENSG00000043355
WDPCP GeneProduct ensembl:ENSG00000143951 BBS15
TTC21B GeneProduct ensembl:ENSG00000123607
C8orf37 GeneProduct ensembl:ENSG00000156172 BBS21
CFAP418
BBS1 GeneProduct ensembl:ENSG00000174483
IFT122 GeneProduct ensembl:ENSG00000163913
KIF7 GeneProduct ensembl:ENSG00000166813
SDCCAG8 GeneProduct ensembl:ENSG00000054282 BBS16
BBS12 GeneProduct ensembl:ENSG00000181004
BBS10 GeneProduct ensembl:ENSG00000179941
BBS2 GeneProduct ensembl:ENSG00000125124
PTCH1 GeneProduct ensembl:ENSG00000185920
BBS4 GeneProduct ensembl:ENSG00000140463
TMEM107 GeneProduct ensembl:ENSG00000179029
TTC8 GeneProduct ensembl:ENSG00000165533 BBS8
CEP104 GeneProduct ensembl:ENSG00000116198
MKS1 GeneProduct ensembl:ENSG00000011143 BBS13
IFT140 GeneProduct ensembl:ENSG00000187535
IFT43 GeneProduct ensembl:ENSG00000119650
ARL6 GeneProduct ensembl:ENSG00000113966 BBS3
WDR35 GeneProduct ensembl:ENSG00000118965
LZTFL1 GeneProduct ensembl:ENSG00000163818 BBS17
WDR19 GeneProduct ensembl:ENSG00000157796
MKKS GeneProduct ensembl:ENSG00000125863 BBS6
SCLT1 GeneProduct ensembl:ENSG00000151466
GLI3 GeneProduct ensembl:ENSG00000106571
SUFU GeneProduct ensembl:ENSG00000107882
TMEM216 GeneProduct ensembl:ENSG00000187049
DCDC2 GeneProduct ensembl:ENSG00000146038
EFHC1 GeneProduct ensembl:ENSG00000096093
C21orf2 GeneProduct ensembl:ENSG00000160226
C2orf71 GeneProduct ensembl:ENSG00000179270
CNGB1 GeneProduct ensembl:ENSG00000070729
CNGA1 GeneProduct ensembl:ENSG00000198515
CEP41 GeneProduct ensembl:ENSG00000106477
PKD1 GeneProduct ensembl:ENSG00000008710
PKD2 GeneProduct ensembl:ENSG00000118762
SMO GeneProduct ensembl:ENSG00000128602
OCRL GeneProduct ensembl:ENSG00000122126
NEK1 GeneProduct ensembl:ENSG00000137601
LCA5 GeneProduct ensembl:ENSG00000135338
IQCB1 GeneProduct ensembl:ENSG00000173226
INPP5E GeneProduct ensembl:ENSG00000148384
GPR161 GeneProduct ensembl:ENSG00000143147
FLCN GeneProduct ensembl:ENSG00000154803
USP9X GeneProduct ensembl:ENSG00000124486
RAB23 GeneProduct ensembl:ENSG00000112210
PKHD1 GeneProduct ensembl:ENSG00000170927
PKD1L1 GeneProduct ensembl:ENSG00000158683
NEK8 GeneProduct ensembl:ENSG00000160602
NPHP3 GeneProduct ensembl:ENSG00000113971
INVS GeneProduct ensembl:ENSG00000119509
EVC2 GeneProduct ensembl:ENSG00000173040
EVC GeneProduct ensembl:ENSG00000072840
ARL3 GeneProduct ensembl:ENSG00000138175
RP2 GeneProduct ensembl:ENSG00000102218
PDE6D GeneProduct ensembl:ENSG00000156973
ARL13B GeneProduct ensembl:ENSG00000169379
MAK GeneProduct ensembl:ENSG00000111837
ICK GeneProduct ensembl:ENSG00000112144
DYNC2LI1 GeneProduct ensembl:ENSG00000138036
WDR60 GeneProduct ensembl:ENSG00000126870
WDR34 GeneProduct ensembl:ENSG00000119333
DYNC2H1 GeneProduct ensembl:ENSG00000187240
TCTEX1D2 GeneProduct ensembl:ENSG00000213123
CLUAP1 GeneProduct ensembl:ENSG00000103351
IFT57 GeneProduct ensembl:ENSG00000114446
IFT52 GeneProduct ensembl:ENSG00000101052
IFT81 GeneProduct ensembl:ENSG00000122970
TRAF3IP1 GeneProduct ensembl:ENSG00000204104
BBS7 GeneProduct ensembl:ENSG00000138686
ARNTL Protein uniprot:A0A140VKD3
GLI2 Protein uniprot:H7C1U2

References

  1. A founder effect in the newfoundland population reduces the Bardet-Biedl syndrome I (BBS1) interval to 1 cM. Young TL, Woods MO, Parfrey PS, Green JS, Hefferton D, Davidson WS. Am J Hum Genet. 1999 Dec;65(6):1680–7. PubMed Europe PMC Scholia
  2. The Bardet-Biedl protein BBS4 targets cargo to the pericentriolar region and is required for microtubule anchoring and cell cycle progression. Kim JC, Badano JL, Sibold S, Esmail MA, Hill J, Hoskins BE, et al. Nat Genet. 2004 May;36(5):462–70. PubMed Europe PMC Scholia
  3. MKKS/BBS6, a divergent chaperonin-like protein linked to the obesity disorder Bardet-Biedl syndrome, is a novel centrosomal component required for cytokinesis. Kim JC, Ou YY, Badano JL, Esmail MA, Leitch CC, Fiedrich E, et al. J Cell Sci. 2005 Mar 1;118(Pt 5):1007–20. PubMed Europe PMC Scholia
  4. BBS10 encodes a vertebrate-specific chaperonin-like protein and is a major BBS locus. Stoetzel C, Laurier V, Davis EE, Muller J, Rix S, Badano JL, et al. Nat Genet. 2006 May;38(5):521–4. PubMed Europe PMC Scholia
  5. Homozygosity mapping with SNP arrays identifies TRIM32, an E3 ubiquitin ligase, as a Bardet-Biedl syndrome gene (BBS11). Chiang AP, Beck JS, Yen HJ, Tayeh MK, Scheetz TE, Swiderski RE, et al. Proc Natl Acad Sci U S A. 2006 Apr 18;103(16):6287–92. PubMed Europe PMC Scholia
  6. Bardet-Biedl syndrome: beyond the cilium. Tobin JL, Beales PL. Pediatr Nephrol. 2007 Jul;22(7):926–36. PubMed Europe PMC Scholia
  7. Hypomorphic mutations in syndromic encephalocele genes are associated with Bardet-Biedl syndrome. Leitch CC, Zaghloul NA, Davis EE, Stoetzel C, Diaz-Font A, Rix S, et al. Nat Genet. 2008 Apr;40(4):443–8. PubMed Europe PMC Scholia
  8. BBS7 and TTC8 (BBS8) mutations play a minor role in the mutational load of Bardet-Biedl syndrome in a multiethnic population. Bin J, Madhavan J, Ferrini W, Mok CA, Billingsley G, Héon E. Hum Mutat. 2009 Jul;30(7):E737-46. PubMed Europe PMC Scholia
  9. Bardet-Biedl syndrome-associated small GTPase ARL6 (BBS3) functions at or near the ciliary gate and modulates Wnt signaling. Wiens CJ, Tong Y, Esmail MA, Oh E, Gerdes JM, Wang J, et al. J Biol Chem. 2010 May 21;285(21):16218–30. PubMed Europe PMC Scholia
  10. A Novel Familial BBS12 Mutation Associated with a Mild Phenotype: Implications for Clinical and Molecular Diagnostic Strategies. Pawlik B, Mir A, Iqbal H, Li Y, Nürnberg G, Becker C, et al. Mol Syndromol. 2010 Feb;1(1):27–34. PubMed Europe PMC Scholia
  11. CEP290 tethers flagellar transition zone microtubules to the membrane and regulates flagellar protein content. Craige B, Tsao CC, Diener DR, Hou Y, Lechtreck KF, Rosenbaum JL, et al. J Cell Biol. 2010 Sep 6;190(5):927–40. PubMed Europe PMC Scholia
  12. Molecular genetics and pathogenic mechanisms for the severe ciliopathies: insights into neurodevelopment and pathogenesis of neural tube defects. Logan CV, Abdel-Hamed Z, Johnson CA. Mol Neurobiol. 2011 Feb;43(1):12–26. PubMed Europe PMC Scholia
  13. Exome sequencing identifies mutations in LZTFL1, a BBSome and smoothened trafficking regulator, in a family with Bardet--Biedl syndrome with situs inversus and insertional polydactyly. Marion V, Stutzmann F, Gérard M, De Melo C, Schaefer E, Claussmann A, et al. J Med Genet. 2012 May;49(5):317–21. PubMed Europe PMC Scholia
  14. Centriole distal appendages promote membrane docking, leading to cilia initiation. Tanos BE, Yang HJ, Soni R, Wang WJ, Macaluso FP, Asara JM, et al. Genes Dev. 2013 Jan 15;27(2):163–8. PubMed Europe PMC Scholia
  15. Mesoaxial polydactyly is a major feature in Bardet-Biedl syndrome patients with LZTFL1 (BBS17) mutations. Schaefer E, Lauer J, Durand M, Pelletier V, Obringer C, Claussmann A, et al. Clin Genet. 2014 May;85(5):476–81. PubMed Europe PMC Scholia
  16. BBS mutations modify phenotypic expression of CEP290-related ciliopathies. Zhang Y, Seo S, Bhattarai S, Bugge K, Searby CC, Zhang Q, et al. Hum Mol Genet. 2014 Jan 1;23(1):40–51. PubMed Europe PMC Scholia
  17. Exome sequencing of Bardet-Biedl syndrome patient identifies a null mutation in the BBSome subunit BBIP1 (BBS18). Scheidecker S, Etard C, Pierce NW, Geoffroy V, Schaefer E, Muller J, et al. J Med Genet. 2014 Feb;51(2):132–6. PubMed Europe PMC Scholia
  18. Interaction with the Bardet-Biedl gene product TRIM32/BBS11 modifies the half-life and localization of Glis2/NPHP7. Ramachandran H, Schäfer T, Kim Y, Herfurth K, Hoff S, Lienkamp SS, et al. J Biol Chem. 2014 Mar 21;289(12):8390–401. PubMed Europe PMC Scholia
  19. Comprehensive molecular diagnosis of Bardet-Biedl syndrome by high-throughput targeted exome sequencing. Xing DJ, Zhang HX, Huang N, Wu KC, Huang XF, Huang F, et al. PLoS One. 2014 Mar 7;9(3):e90599. PubMed Europe PMC Scholia
  20. CEP290 and the primary cilium. Drivas TG, Bennett J. Adv Exp Med Biol. 2014;801:519–25. PubMed Europe PMC Scholia
  21. Renal-retinal ciliopathy gene Sdccag8 regulates DNA damage response signaling. Airik R, Slaats GG, Guo Z, Weiss AC, Khan N, Ghosh A, et al. J Am Soc Nephrol. 2014 Nov;25(11):2573–83. PubMed Europe PMC Scholia
  22. ICK is essential for cell type-specific ciliogenesis and the regulation of ciliary transport. Chaya T, Omori Y, Kuwahara R, Furukawa T. EMBO J. 2014 Jun 2;33(11):1227–42. PubMed Europe PMC Scholia
  23. CEP290 gene transfer rescues Leber congenital amaurosis cellular phenotype. Burnight ER, Wiley LA, Drack AV, Braun TA, Anfinson KR, Kaalberg EE, et al. Gene Ther. 2014 Jul;21(7):662–72. PubMed Europe PMC Scholia
  24. Mutations in IFT172 cause isolated retinal degeneration and Bardet-Biedl syndrome. Bujakowska KM, Zhang Q, Siemiatkowska AM, Liu Q, Place E, Falk MJ, et al. Hum Mol Genet. 2015 Jan 1;24(1):230–42. PubMed Europe PMC Scholia
  25. Compound heterozygosity for a frame shift mutation and a likely pathogenic sequence variant in the planar cell polarity—ciliogenesis gene WDPCP in a girl with polysyndactyly, coarctation of the aorta, and tongue hamartomas. Saari J, Lovell MA, Yu HC, Bellus GA. Am J Med Genet A. 2015 Feb;167A(2):421–7. PubMed Europe PMC Scholia
  26. IFT27 links the BBSome to IFT for maintenance of the ciliary signaling compartment. Eguether T, San Agustin JT, Keady BT, Jonassen JA, Liang Y, Francis R, et al. Dev Cell. 2014 Nov 10;31(3):279–90. PubMed Europe PMC Scholia
  27. Alternative Splicing Shapes the Phenotype of a Mutation in BBS8 To Cause Nonsyndromic Retinitis Pigmentosa. Murphy D, Singh R, Kolandaivelu S, Ramamurthy V, Stoilov P. Mol Cell Biol. 2015 May;35(10):1860–70. PubMed Europe PMC Scholia
  28. TMEM107 Is a Critical Regulator of Ciliary Protein Composition and Is Mutated in Orofaciodigital Syndrome. Shylo NA, Christopher KJ, Iglesias A, Daluiski A, Weatherbee SD. Hum Mutat. 2016 Feb;37(2):155–9. PubMed Europe PMC Scholia
  29. TMEM107 recruits ciliopathy proteins to subdomains of the ciliary transition zone and causes Joubert syndrome. Lambacher NJ, Bruel AL, van Dam TJP, Szymańska K, Slaats GG, Kuhns S, et al. Nat Cell Biol. 2016 Jan;18(1):122–31. PubMed Europe PMC Scholia
  30. Identification of a novel mutation confirms the implication of IFT172 (BBS20) in Bardet-Biedl syndrome. Schaefer E, Stoetzel C, Scheidecker S, Geoffroy V, Prasad MK, Redin C, et al. J Hum Genet. 2016 May;61(5):447–50. PubMed Europe PMC Scholia
  31. Homozygosity mapping identified a novel protein truncating mutation (p.Ser100Leufs*24) of the BBS9 gene in a consanguineous Pakistani family with Bardet Biedl syndrome. Khan MA, Mohan S, Zubair M, Windpassinger C. BMC Med Genet. 2016 Feb 4;17:10. PubMed Europe PMC Scholia
  32. A Splice Variant of Bardet-Biedl Syndrome 5 (BBS5) Protein that Is Selectively Expressed in Retina. Bolch SN, Dugger DR, Chong T, McDowell JH, Smith WC. PLoS One. 2016 Feb 11;11(2):e0148773. PubMed Europe PMC Scholia
  33. Mutations in C8ORF37 cause Bardet Biedl syndrome (BBS21). Heon E, Kim G, Qin S, Garrison JE, Tavares E, Vincent A, et al. Hum Mol Genet. 2016 Jun 1;25(11):2283–94. PubMed Europe PMC Scholia
  34. SDCCAG8 Interacts with RAB Effector Proteins RABEP2 and ERC1 and Is Required for Hedgehog Signaling. Airik R, Schueler M, Airik M, Cho J, Ulanowicz KA, Porath JD, et al. PLoS One. 2016 May 25;11(5):e0156081. PubMed Europe PMC Scholia
  35. Bardet Biedl syndrome in South Africa: A single founder mutation. Fieggen K, Milligan C, Henderson B, Esterhuizen AI. S Afr Med J. 2016 May 25;106(6 Suppl 1):S72-4. PubMed Europe PMC Scholia
  36. Genetic and clinical characterization of Pakistani families with Bardet-Biedl syndrome extends the genetic and phenotypic spectrum. Maria M, Lamers IJC, Schmidts M, Ajmal M, Jaffar S, Ullah E, et al. Sci Rep. 2016 Oct 6;6:34764. PubMed Europe PMC Scholia
  37. NEK8 regulates DNA damage-induced RAD51 foci formation and replication fork protection. Abeyta A, Castella M, Jacquemont C, Taniguchi T. Cell Cycle. 2017 Feb 16;16(4):335–47. PubMed Europe PMC Scholia
  38. Genes and molecular pathways underpinning ciliopathies. Reiter JF, Leroux MR. Nat Rev Mol Cell Biol. 2017 Sep;18(9):533–47. PubMed Europe PMC Scholia
  39. Bardet-Biedl Syndrome as a Chaperonopathy: Dissecting the Major Role of Chaperonin-Like BBS Proteins (BBS6-BBS10-BBS12). Álvarez-Satta M, Castro-Sánchez S, Valverde D. Front Mol Biosci. 2017 Jul 31;4:55. PubMed Europe PMC Scholia
  40. Bardet-Biedl syndrome-8 (BBS8) protein is crucial for the development of outer segments in photoreceptor neurons. Dilan TL, Singh RK, Saravanan T, Moye A, Goldberg AFX, Stoilov P, et al. Hum Mol Genet. 2018 Jan 15;27(2):283–94. PubMed Europe PMC Scholia
  41. Homozygous mutation in CEP19, a gene mutated in morbid obesity, in Bardet-Biedl syndrome with predominant postaxial polydactyly. Yıldız Bölükbaşı E, Mumtaz S, Afzal M, Woehlbier U, Malik S, Tolun A. J Med Genet. 2018 Mar;55(3):189–97. PubMed Europe PMC Scholia
  42. Regulation of circadian clock transcriptional output by CLOCK:BMAL1. Trott AJ, Menet JS. PLoS Genet. 2018 Jan 4;14(1):e1007156. PubMed Europe PMC Scholia
  43. C8ORF37 Is Required for Photoreceptor Outer Segment Disc Morphogenesis by Maintaining Outer Segment Membrane Protein Homeostasis. Sharif AS, Yu D, Loertscher S, Austin R, Nguyen K, Mathur PD, et al. J Neurosci. 2018 Mar 28;38(13):3160–76. PubMed Europe PMC Scholia
  44. Combining targeted panel-based resequencing and copy-number variation analysis for the diagnosis of inherited syndromic retinopathies and associated ciliopathies. Sanchez-Navarro I, R J da Silva L, Blanco-Kelly F, Zurita O, Sanchez-Bolivar N, Villaverde C, et al. Sci Rep. 2018 Mar 27;8(1):5285. PubMed Europe PMC Scholia
  45. Identification of A Novel Compound Heterozygous Mutation in BBS12 in An Iranian Family with Bardet-Biedl Syndrome Using Targeted Next Generation Sequencing. Nikkhah E, Safaralizadeh R, Mohammadiasl J, Tahmasebi Birgani M, Hosseinpour Feizi MA, Golchin N. Cell J. 2018 Jul;20(2):284–9. PubMed Europe PMC Scholia
  46. The regulation of cilium assembly and disassembly in development and disease. Wang L, Dynlacht BD. Development. 2018 Sep 17;145(18):dev151407. PubMed Europe PMC Scholia
  47. SCAPER-associated nonsyndromic autosomal recessive retinitis pigmentosa. Jauregui R, Thomas AL, Liechty B, Velez G, Mahajan VB, Clark L, et al. Am J Med Genet A. 2019 Feb;179(2):312–6. PubMed Europe PMC Scholia
  48. SCAPER localizes to primary cilia and its mutation affects cilia length, causing Bardet-Biedl syndrome. Wormser O, Gradstein L, Yogev Y, Perez Y, Kadir R, Goliand I, et al. Eur J Hum Genet. 2019 Jun;27(6):928–40. PubMed Europe PMC Scholia
  49. Identification and Characterization of Known Biallelic Mutations in the IFT27 (BBS19) Gene in a Novel Family With Bardet-Biedl Syndrome. Schaefer E, Delvallée C, Mary L, Stoetzel C, Geoffroy V, Marks-Delesalle C, et al. Front Genet. 2019 Jan 30;10:21. PubMed Europe PMC Scholia
  50. Bardet-Biedl syndrome obesity: BBS4 regulates cellular ER stress in early adipogenesis. Anosov M, Birk R. Mol Genet Metab. 2019 Apr;126(4):495–503. PubMed Europe PMC Scholia
  51. Meta-analysis of genotype-phenotype associations in Bardet-Biedl syndrome uncovers differences among causative genes. Niederlova V, Modrak M, Tsyklauri O, Huranova M, Stepanek O. Hum Mutat. 2019 Nov;40(11):2068–87. PubMed Europe PMC Scholia
  52. ARL3, a small GTPase with a functionally conserved role in primary cilia and immune synapses. Powell L, Samarakoon YH, Ismail S, Sayer JA. Small GTPases. 2021 May;12(3):167–76. PubMed Europe PMC Scholia
  53. Roles for IFT172 and Primary Cilia in Cell Migration, Cell Division, and Neocortex Development. Pruski M, Hu L, Yang C, Wang Y, Zhang JB, Zhang L, et al. Front Cell Dev Biol. 2019 Nov 26;7:287. PubMed Europe PMC Scholia
  54. Novel mutation in MKKS/BBS6 linked with arRP and polydactyly in a family of North Indian origin. Goyal S, Singh IR, Vanita V. Clin Exp Ophthalmol. 2020 Apr;48(3):343–55. PubMed Europe PMC Scholia
  55. The morbid genome of ciliopathies: an update. Shamseldin HE, Shaheen R, Ewida N, Bubshait DK, Alkuraya H, Almardawi E, et al. Genet Med. 2020 Jun;22(6):1051–60. PubMed Europe PMC Scholia
  56. ARL13B regulates Sonic hedgehog signaling from outside primary cilia. Gigante ED, Taylor MR, Ivanova AA, Kahn RA, Caspary T. Elife. 2020 Mar 4;9:e50434. PubMed Europe PMC Scholia
  57. Bardet-Biedl syndrome in two unrelated patients with identical compound heterozygous SCLT1 mutations. Morisada N, Hamada R, Miura K, Ye MJ, Nozu K, Hattori M, et al. CEN Case Rep. 2020 Aug;9(3):260–5. PubMed Europe PMC Scholia
  58. High prevalence of Bardet-Biedl syndrome in La Réunion Island is due to a founder variant in ARL6/BBS3. Gouronc A, Zilliox V, Jacquemont ML, Darcel F, Leuvrey AS, Nourisson E, et al. Clin Genet. 2020 Aug;98(2):166–71. PubMed Europe PMC Scholia
  59. BBSome Component BBS5 Is Required for Cone Photoreceptor Protein Trafficking and Outer Segment Maintenance. Bales KL, Bentley MR, Croyle MJ, Kesterson RA, Yoder BK, Gross AK. Invest Ophthalmol Vis Sci. 2020 Aug 3;61(10):17. PubMed Europe PMC Scholia
  60. A novel splice site mutation in the SDCCAG8 gene in an Iranian family with Bardet-Biedl syndrome. Bahmanpour Z, Daneshmandpour Y, Kazeminasab S, Khalil Khalili S, Alehabib E, Chapi M, et al. Int Ophthalmol. 2021 Feb;41(2):389–97. PubMed Europe PMC Scholia
  61. Bardet-Biedl Syndrome Caused by Skipping of SCLT1 Complicated by Microvesicular Steatohepatitis. Horiuchi K, Kogiso T, Sagawa T, Ito T, Taniai M, Miura K, et al. Intern Med. 2020;59(21):2719–24. PubMed Europe PMC Scholia
  62. CEP290 is essential for the initiation of ciliary transition zone assembly. Wu Z, Pang N, Zhang Y, Chen H, Peng Y, Fu J, et al. PLoS Biol. 2020 Dec 28;18(12):e3001034. PubMed Europe PMC Scholia
  63. Loss of Ciliary Gene Bbs8 Results in Physiological Defects in the Retinal Pigment Epithelium. Schneider S, De Cegli R, Nagarajan J, Kretschmer V, Matthiessen PA, Intartaglia D, et al. Front Cell Dev Biol. 2021 Feb 18;9:607121. PubMed Europe PMC Scholia
  64. Identification of a Novel Homozygous Missense (c.443A>T:p.N148I) Mutation in BBS2 in a Kashmiri Family with Bardet-Biedl Syndrome. Ali G, Sadia, Foo JN, Nasir A, Chang CH, Chew EG, et al. Biomed Res Int. 2021 Feb 23;2021:6626015. PubMed Europe PMC Scholia
  65. A missense mutation in IFT74, encoding for an essential component for intraflagellar transport of Tubulin, causes asthenozoospermia and male infertility without clinical signs of Bardet-Biedl syndrome. Lorès P, Kherraf ZE, Amiri-Yekta A, Whitfield M, Daneshipour A, Stouvenel L, et al. Hum Genet. 2021 Jul;140(7):1031–43. PubMed Europe PMC Scholia
  66. Bardet-Biedl syndrome-7 (BBS7) shows treatment potential and a cone-rod dystrophy phenotype that recapitulates the non-human primate model. Aleman TS, O’Neil EC, O’Connor K, Jiang YY, Aleman IA, Bennett J, et al. Ophthalmic Genet. 2021 Jun;42(3):252–65. PubMed Europe PMC Scholia
  67. Third case of Bardet-Biedl syndrome caused by a biallelic variant predicted to affect splicing of IFT74. Mardy AH, Hodoglugil U, Yip T, Slavotinek AM. Clin Genet. 2021 Jul;100(1):93–9. PubMed Europe PMC Scholia
  68. Novel biallelic variant in BBS9 causative of Bardet-Biedl syndrome: expanding the spectrum of disease-causing genetic alterations. Suárez-González J, Seidel V, Andrés-Zayas C, Izquierdo E, Buño I. BMC Med Genomics. 2021 Mar 26;14(1):91. PubMed Europe PMC Scholia
  69. Generation of induced pluripotent stem cells from a Bardet-Biedl syndrome patient carrying a homologous BBS2 c.534 + 1G > T mutation. Ting CY, Huang CY, Chen HC, Chiu YW, Hsieh PCH, Lee JJ. Stem Cell Res. 2021 Aug;55:102480. PubMed Europe PMC Scholia
  70. A Novel BBS9 Mutation Identified via Whole-Exome Sequencing in a Chinese Family with Bardet-Biedl Syndrome. Zhang Y, Xu M, Zhang M, Yang G, Li X. Biomed Res Int. 2021 Oct 15;2021:4514967. PubMed Europe PMC Scholia
  71. BBS7-SHH Signaling Activity Regulates Primary Cilia for Periodontal Homeostasis. Chang PE, Li S, Kim HY, Lee DJ, Choi YJ, Jung HS. Front Cell Dev Biol. 2021 Dec 7;9:796274. PubMed Europe PMC Scholia