Leukotriene metabolic pathway (WP5171)

Homo sapiens

This pathway shows an overview of leukotrienes biosynthesis and metabolism. Leukotrienes are a group of biologically active lipid mediators who are derived pre-dominantly from arachidonic acid via the 5-lipoxygenase pathways. This pathway follow two routes, one include cysteinyl leukotrienes (LTC4, LTD4 and LTE4), the second starting at LTB4. This pathway is linked to five disorders, out of which three are caused by hereditary primary defects in one enzyme also know as Inherited Metabolic Disorders or IMDs/IEMs (disorders depicted in pink). The clinical presentation of LTC4 synthase deficiency includes muscular hypotonia, psychomotor retardation, microcephaly and failure to thrive. The other two defects, gamma-glutamyl transpeptidase deficiency (GGT1 protein, also know as Glutathionuria) and membrane-bound dipeptidase deficiency (DPEP1 protein, responsible for a wide range of dipeptides hydrolytic reactions), have been studied to a lesser degree. Two additional disorders can be linked to this pathway: an increased risk of ischemic stroke is linked to the 5-LOAP protein (PMID:15640973 and 14770184) and deafness (ABCC1 autosomical dominant disorder, found in one family, severe hearing loss as adult, the relationship between the phenotype and gene is provisional). This pathway was inspired by Chapter 38 of the book of Blau (ISBN 3642403360 (978-3642403361)).

Authors

Peter Swanenberg , Andra Waagmeester , Denise Slenter , Eric Weitz , Friederike Ehrhart , and Lars Willighagen

Activity

last edited

Discuss this pathway

Check for ongoing discussions or start your own.

Cited In

Are you planning to include this pathway in your next publication? See How to Cite and add a link here to your paper once it's online.

Organisms

Homo sapiens

Communities

Inherited Metabolic Disorders (IMD) Pathways Rare Diseases

Annotations

Disease Ontology

cerebral infarction autosomal dominant nonsyndromic deafness cerebrovascular disease gamma-glutamyl transpeptidase deficiency brain ischemia

Pathway Ontology

leukotriene metabolic pathway leukotriene C4 synthase deficiency pathway glutathionuria disease pathway

Participants

Label Type Compact URI Comment
12-Oxo-LTB4 Metabolite chebi:27814 Found in reactome reaction: arachidonic acid metabolism
16-COOH-tetranor-LTE3 Metabolite chebi:74014 Structure from PMID:17623009 is exact match with CHEBI:74014, aka 16-carboxy-17,18,19,20-tetranor-leukotriene E3
20-hydroxy-LTE4 Metabolite chebi:28700
LTA4 Metabolite chebi:15651
LTC4 Metabolite chebi:16978
LTE4 Metabolite chebi:15650 PMID: 2174886
20-carboxy-LTE4 Metabolite chebi:134517 PMID: 2174886
20-hydroxy-LTB4 Metabolite chebi:15646
Glutathione Metabolite chebi:16856
Arachidonic acid Metabolite chebi:15843
N-acetyl-LTE4 Metabolite chebi:7210 PMID: 2174886
LTD4 Metabolite chebi:28666
20-COOH-LTB4 Metabolite chebi:27562 CHEBI id lead to20-hydroxy-20-oxoleukotriene but according to Rhea is the same as 20-carboxy-LTB4
has both CHEBI: 27562 and 90722 who are very similair and only differ in charge. no charge mentioned in Blau therefero 27562 is chosen
18-carboxy-LTE4 Metabolite chebi:74017 aka 18-COOH-LTE4,PMID: 2174886. Structural depiction in PMID:2174886 is exact match with 18-carboxy-19,20-dinor-leukotriene E4 (CHEBI:74017)
20-oxo-LTB4 Metabolite chebi:63979 looks firs like a conversion from hydroxy to oxo (RHEA:48668) and then from oxo to carboxy (RHEA:48672)
found by RHE reactions described above
5-HPETE Metabolite chebi:15632 5-HPETE: 5-Hydroperoxyeicosatetraenoic acid
18-COOH-LTB4 Metabolite chebi:63980 Found in reactome reaction: arachidonic acid metabolism
Full name: 18-hydroxy-18-oxo-dinorleukotriene B4
LTB4 Metabolite chebi:15647
14-COOH-hexanor-LTE4 Metabolite chebi:74019 Structure from PMID:17623009 is exact match with CHEBI:74019, aka 14-carboxy-15,16,17,18,19,20-hexanor-leukotriene E3
LTA4H GeneProduct ensembl:ENSG00000111144
PTGR1 GeneProduct ensembl:ENSG00000106853 Found in reactome reaction: arachidonic acid metabolism
GGT5 GeneProduct ensembl:ENSG00000099998 GGT5 or GGTLA1
Founde by rhea reaction and than the uniprot search
ABCC1 GeneProduct ensembl:ENSG00000103222 Found in reactome reaction: arachidonic acid metabolism
CYP4F3 GeneProduct ensembl:ENSG00000186529 CYP4F3 or LTB4H
5-LOAP GeneProduct ensembl:ENSG00000132965 5-LOAP: 5-lipoxygenase-activating protein found as ALOX5AP
5-LO GeneProduct ensembl:ENSG00000012779 5-LO: 5-LO 5-lipoxygenase
Found as gene ALOX5
LTC4S GeneProduct ensembl:ENSG00000213316 LTC4S: LTC4 synthase
5-LO GeneProduct ensembl:ENSG00000012779 5-LO: 5-lipoxygenase
Found as gene ALOX5
leukotriene-E4 20-monooxygenase GeneProduct eccode:1.14.13.34 Found on Rhea in the cross-references section in MetaCyc that leukotriene-E4 20-monooxygenase is involved in this reaction https://biocyc.org/META/NEW-IMAGE?type=REACTION&object=LEUKOTRIENE-E4-20-MONOOXYGENASE-RXN
BRENDA site: https://www.brenda-enzymes.org/enzyme.php?ecno=1.14.13.34#SYSTEMATIC%20NAME
PMID: 2174886 N-acyetyl transferase
DPEP1 GeneProduct ensembl:ENSG00000015413 DPEP1: membrane-bound dipeptidase
GGT1 GeneProduct ensembl:ENSG00000100031 GGT1: Gamma-glutamyl transpeptidase
DPEP2 GeneProduct ensembl:ENSG00000167261 Full name: Dipeptidase 1
Found in RHEA reaction with uniprot
2,4-dienoyl-CoA reductase (peroxisomal) Protein uniprot:Q9NUI1 PMID: 2174886; localization info not provided
2,4-dienoyl-CoA reductase (mitochondrial) Protein uniprot:Q16698 PMID: 2174886; localization info not provided

References

  1. Leukotriene A4 hydrolase in the human B-lymphocytic cell line Raji: indications of catalytically divergent forms of the enzyme. Odlander B, Claesson HE, Bergman T, Rådmark O, Jörnvall H, Haeggström JZ. Arch Biochem Biophys. 1991 May 15;287(1):167–74. PubMed Europe PMC Scholia
  2. Leukotriene E4 elimination and metabolism in normal human subjects. Sala A, Voelkel N, Maclouf J, Murphy RC. J Biol Chem. 1990 Dec 15;265(35):21771–8. PubMed Europe PMC Scholia
  3. The identification of a distinct export step following the biosynthesis of leukotriene C4 by human eosinophils. Lam BK, Owen WF Jr, Austen KF, Soberman RJ. J Biol Chem. 1989 Aug 5;264(22):12885–9. PubMed Europe PMC Scholia
  4. Purification and characterization of human microsomal dipeptidase. Adachi H, Kubota I, Okamura N, Iwata H, Tsujimoto M, Nakazato H, et al. J Biochem. 1989 Jun;105(6):957–61. PubMed Europe PMC Scholia
  5. Enzymatic hydration of leukotriene A4. Purification and characterization of a novel epoxide hydrolase from human erythrocytes. McGee J, Fitzpatrick F. J Biol Chem. 1985 Oct 15;260(23):12832–7. PubMed Europe PMC Scholia
  6. Single protein from human leukocytes possesses 5-lipoxygenase and leukotriene A4 synthase activities. Rouzer CA, Matsumoto T, Samuelsson B. Proc Natl Acad Sci U S A. 1986 Feb;83(4):857–61. PubMed Europe PMC Scholia
  7. Release and functional characterization of the leukotriene D4-metabolizing enzyme (dipeptidase) from human polymorphonuclear leucocytes. Raulf M, König W, Köller M, Stüning M. Scand J Immunol. 1987 Mar;25(3):305–13. PubMed Europe PMC Scholia
  8. Conversion of leukotriene D4 to leukotriene E4 by a dipeptidase released from the specific granule of human polymorphonuclear leucocytes. Lee CW, Lewis RA, Corey EJ, Austen KF. Immunology. 1983 Jan;48(1):27–35. PubMed Europe PMC Scholia
  9. Molecular cloning and expression of human leukotriene-C4 synthase. Welsch DJ, Creely DP, Hauser SD, Mathis KJ, Krivi GG, Isakson PC. Proc Natl Acad Sci U S A. 1994 Oct 11;91(21):9745–9. PubMed Europe PMC Scholia
  10. Cloning and expression of a novel form of leukotriene B4 omega-hydroxylase from human liver. Kikuta Y, Kusunose E, Kondo T, Yamamoto S, Kinoshita H, Kusunose M. FEBS Lett. 1994 Jul 4;348(1):70–4. PubMed Europe PMC Scholia
  11. The suppression of 5-lipoxygenation of arachidonic acid in human polymorphonuclear leucocytes by the 15-lipoxygenase product (15S)-hydroxy-(5Z,8Z,11Z,13E)-eicosatetraenoic acid: structure-activity relationship and mechanism of action. Petrich K, Ludwig P, Kühn H, Schewe T. Biochem J. 1996 Mar 15;314 ( Pt 3)(Pt 3):911–6. PubMed Europe PMC Scholia
  12. Oxidative inactivation of human 5-lipoxygenase in phosphatidylcholine vesicles. De Carolis E, Denis D, Riendeau D. Eur J Biochem. 1996 Jan 15;235(1–2):416–23. PubMed Europe PMC Scholia
  13. Human leukotriene B4 omega-hydroxylase (CYP4F3) gene: molecular cloning and chromosomal localization. Kikuta Y, Kato M, Yamashita Y, Miyauchi Y, Tanaka K, Kamada N, et al. DNA Cell Biol. 1998 Mar;17(3):221–30. PubMed Europe PMC Scholia
  14. Kinetic mechanism of glutathione conjugation to leukotriene A4 by leukotriene C4 synthase. Gupta N, Gresser MJ, Ford-Hutchinson AW. Biochim Biophys Acta. 1998 Mar 30;1391(2):157–68. PubMed Europe PMC Scholia
  15. Purification and characterization of recombinant human neutrophil leukotriene B4 omega-hydroxylase (cytochrome P450 4F3). Kikuta Y, Kusunose E, Sumimoto H, Mizukami Y, Takeshige K, Sakaki T, et al. Arch Biochem Biophys. 1998 Jul 15;355(2):201–5. PubMed Europe PMC Scholia
  16. Role of human CYP4F2 in hepatic catabolism of the proinflammatory agent leukotriene B4. Jin R, Koop DR, Raucy JL, Lasker JM. Arch Biochem Biophys. 1998 Nov 1;359(1):89–98. PubMed Europe PMC Scholia
  17. Metabolic transformations of leukotriene B4 in primary cultures of human hepatocytes. Wheelan P, Hankin JA, Bilir B, Guenette D, Murphy RC. J Pharmacol Exp Ther. 1999 Jan;288(1):326–34. PubMed Europe PMC Scholia
  18. Characterization of a leukotriene C4 export mechanism in human platelets: possible involvement of multidrug resistance-associated protein 1. Sjölinder M, Tornhamre S, Claesson HE, Hydman J, Lindgren J. J Lipid Res. 1999 Mar;40(3):439–46. PubMed Europe PMC Scholia
  19. Characterization of human liver leukotriene B(4) omega-hydroxylase P450 (CYP4F2). Kikuta Y, Kusunose E, Kusunose M. J Biochem. 2000 Jun;127(6):1047–52. PubMed Europe PMC Scholia
  20. Urinary metabolites of leukotriene B4 in the human subject. Berry KAZ, Borgeat P, Gosselin J, Flamand L, Murphy RC. J Biol Chem. 2003 Jul 4;278(27):24449–60. PubMed Europe PMC Scholia
  21. Leukotriene A4 hydrolase: identification of a common carboxylate recognition site for the epoxide hydrolase and aminopeptidase substrates. Rudberg PC, Tholander F, Andberg M, Thunnissen MMGM, Haeggström JZ. J Biol Chem. 2004 Jun 25;279(26):27376–82. PubMed Europe PMC Scholia
  22. Expression and characterization of human cytochrome P450 4F11: Putative role in the metabolism of therapeutic drugs and eicosanoids. Kalsotra A, Turman CM, Kikuta Y, Strobel HW. Toxicol Appl Pharmacol. 2004 Sep 15;199(3):295–304. PubMed Europe PMC Scholia
  23. Functional polymorphism in human CYP4F2 decreases 20-HETE production. Stec DE, Roman RJ, Flasch A, Rieder MJ. Physiol Genomics. 2007 Jun 19;30(1):74–81. PubMed Europe PMC Scholia
  24. Biosynthesis and metabolism of leukotrienes. Murphy RC, Gijón MA. Biochem J. 2007 Aug 1;405(3):379–95. PubMed Europe PMC Scholia
  25. Gamma-glutamyl compounds: substrate specificity of gamma-glutamyl transpeptidase enzymes. Wickham S, West MB, Cook PF, Hanigan MH. Anal Biochem. 2011 Jul 15;414(2):208–14. PubMed Europe PMC Scholia
  26. The novel 13S,14S-epoxy-maresin is converted by human macrophages to maresin 1 (MaR1), inhibits leukotriene A4 hydrolase (LTA4H), and shifts macrophage phenotype. Dalli J, Zhu M, Vlasenko NA, Deng B, Haeggström JZ, Petasis NA, et al. FASEB J. 2013 Jul;27(7):2573–83. PubMed Europe PMC Scholia
  27. Functional characterization of genetic enzyme variations in human lipoxygenases. Horn T, Reddy Kakularam K, Anton M, Richter C, Reddanna P, Kuhn H. Redox Biol. 2013 Nov 11;1(1):566–77. PubMed Europe PMC Scholia
  28. ATP allosterically activates the human 5-lipoxygenase molecular mechanism of arachidonic acid and 5(S)-hydroperoxy-6(E),8(Z),11(Z),14(Z)-eicosatetraenoic acid. Smyrniotis CJ, Barbour SR, Xia Z, Hixon MS, Holman TR. Biochemistry. 2014 Jul 15;53(27):4407–19. PubMed Europe PMC Scholia
  29. Human prostaglandin reductase 1 (PGR1): Substrate specificity, inhibitor analysis and site-directed mutagenesis. Mesa J, Alsina C, Oppermann U, Parés X, Farrés J, Porté S. Chem Biol Interact. 2015 Jun 5;234:105–13. PubMed Europe PMC Scholia
  30. Maresin conjugates in tissue regeneration biosynthesis enzymes in human macrophages. Dalli J, Vlasakov I, Riley IR, Rodriguez AR, Spur BW, Petasis NA, et al. Proc Natl Acad Sci U S A. 2016 Oct 25;113(43):12232–7. PubMed Europe PMC Scholia
  31. Mutations of Triad Determinants Changes the Substrate Alignment at the Catalytic Center of Human ALOX5. Ivanov I, Golovanov AB, Ferretti C, Canyelles-Niño M, Heydeck D, Stehling S, et al. ACS Chem Biol. 2019 Dec 20;14(12):2768–82. PubMed Europe PMC Scholia