Riboflavin and CoQ disorders (WP5037)

Homo sapiens

Riboflavin (aka Vitamin B2) is used as molecular precursor for the formation of FAD and FMN, which are both essential cofactors in beta-oxidation, branched-chain-amino-acid catabolism and the mitochondrial electron transport of the TCA cycle. Coenzyme Q10 (aka ubiquinone or CoQ10) functions as a electron carrier, antioxidant and influences pyrimidine metabolism directly. This pathway was inspired by Chapter 16 (ed. 4) from the book of Blau (ISBN 3642403360 (978-3642403361)).

Authors

Denise Slenter , Egon Willighagen , Finterly Hu , Friederike Ehrhart , and Eric Weitz

Activity

last edited

Discuss this pathway

Check for ongoing discussions or start your own.

Cited In

Are you planning to include this pathway in your next publication? See How to Cite and add a link here to your paper once it's online.

Organisms

Homo sapiens

Communities

Inherited Metabolic Disorders (IMD) Pathways Rare Diseases

Annotations

Disease Ontology

Brown-Vialetto-Van Laere syndrome 1 primary coenzyme Q10 deficiency 5 primary coenzyme Q10 deficiency 4 Fazio-Londe disease coenzyme Q10 deficiency disease primary coenzyme Q10 deficiency 6 Brown-Vialetto-Van Laere syndrome primary coenzyme Q10 deficiency 3 primary coenzyme Q10 deficiency 2 primary coenzyme Q10 deficiency 1 riboflavin deficiency Brown-Vialetto-Van Laere syndrome 2

Pathway Ontology

riboflavin metabolic pathway ubiquinone biosynthetic pathway

Participants

Label Type Compact URI Comment
a ubiquinone Metabolite chebi:16389
FADH2 Metabolite chebi:58307
6 PP Metabolite chebi:33019 diphosphate
FMN Metabolite chebi:58210 aka flavin mononucleotide
trans-decaprenyl-PP Metabolite chebi:60721 aka all-trans-decaprenyl diphosphate
CoQ10 Metabolite chebi:46245
6 IPP Metabolite chebi:128769 aka isopentenyl diphosphate
Farnesyl-PP Metabolite chebi:175763 aka Farnesyl PyroPhosphate
AMP Metabolite chebi:16027 cofactor [https://en.wikipedia.org/wiki/Electron-transferring_flavoprotein]
RIB Metabolite chebi:17015
FMN Metabolite chebi:17621
RIB Metabolite chebi:17015 aka riboflavin
FAD Metabolite chebi:16238
FAD Metabolite chebi:57692 aka flavin adenine dinucleotide
a ubiquinol Metabolite chebi:17976
FAD Metabolite chebi:57692
FAD Metabolite chebi:57692 aka flavin adenine dinucleotide
cofactor [https://en.wikipedia.org/wiki/Electron-transferring_flavoprotein]
PHB Metabolite chebi:30763
DHB Metabolite chebi:64136
all-E-10PrP2 Metabolite chebi:61011
PPi Metabolite chebi:29888
FAD Metabolite chebi:16238
DHDB Metabolite chebi:50775
Q10H2 Metabolite chebi:64183 aka ubiquinol-10
DMQ10H2 Metabolite chebi:64181
DeMQ10H2 Metabolite chebi:64182
MHDB Metabolite chebi:50776
DMPhOH Metabolite chebi:50774
MDMQ10H2 Metabolite chebi:64180
Fe2+ Metabolite chebi:29033
Trans-nonaprenyl-PP Metabolite chebi:58391 aka all-trans-nonaprenyl diphosphate
7 PP Metabolite chebi:33019 diphosphate
7 IPP Metabolite chebi:128769 aka isopentenyl diphosphate
CETF GeneProduct interpro:IPR014730 aka electron transfer flavoprotein complex
ETFDH GeneProduct ensembl:ENSG00000171503
PDSS1 Protein uniprot:Q5T2R2
Riboflavin kinase Protein uniprot:Q969G6 EC: 2.7.1.26 (according to Rhea)
CABC1 Protein uniprot:Q8NI60 aka COQ8A, ADCK3.
atypical kinase, substrate specificity unknown [https://www.uniprot.org/uniprot/Q8NI60]
APTX Protein uniprot:Q7Z2E3
FAD synthetase Protein uniprot:Q8NFF5 aka FLAD1, EC 2.7.7.2 [https://en.wikipedia.org/wiki/FMN_adenylyltransferase]
ETFDH Protein uniprot:Q16134
SLC52A1 Protein uniprot:Q9NWF4
SLC52A2 Protein uniprot:Q9HAB3
SLC52A3 Protein uniprot:SLC52A3
ETFA Protein uniprot:P13804
ETFB Protein uniprot:38117
COQ2 Protein uniprot:Q96H96
COQ6 Protein uniprot:Q9Y2Z9
COQ7 Protein uniprot:Q99807
COQ9 Protein uniprot:O75208
PDSS2 Protein uniprot:Q86YH6

References

  1. Physician’s Guide to the Diagnosis, Treatment, and Follow-Up of Inherited Metabolic Diseases [Internet]. Blau N, Duran M, Gibson KM, Dionisi-Vici C. Springer; 2014. 0 p. Available from: https://books.google.com/books/about/Physician_s_Guide_to_the_Diagnosis_Treat.html?hl=&id=wJRBnwEACAAJ OpenLibrary Worldcat
  2. Coenzyme Q deficiency and cerebellar ataxia associated with an aprataxin mutation. Quinzii CM, Kattah AG, Naini A, Akman HO, Mootha VK, DiMauro S, et al. Neurology. 2005 Feb 8;64(3):539–41. PubMed Europe PMC Scholia
  3. A mutation in para-hydroxybenzoate-polyprenyl transferase (COQ2) causes primary coenzyme Q10 deficiency. Quinzii C, Naini A, Salviati L, Trevisson E, Navas P, Dimauro S, et al. Am J Hum Genet. 2006 Feb;78(2):345–9. PubMed Europe PMC Scholia
  4. Muscle coenzyme Q10 deficiencies in ataxia with oculomotor apraxia 1. Le Ber I, Dubourg O, Benoist JF, Jardel C, Mochel F, Koenig M, et al. Neurology. 2007 Jan 23;68(4):295–7. PubMed Europe PMC Scholia
  5. CABC1 gene mutations cause ubiquinone deficiency with cerebellar ataxia and seizures. Mollet J, Delahodde A, Serre V, Chretien D, Schlemmer D, Lombes A, et al. Am J Hum Genet. 2008 Mar;82(3):623–30. PubMed Europe PMC Scholia
  6. Identification and functional characterization of a novel human and rat riboflavin transporter, RFT1. Yonezawa A, Masuda S, Katsura T, Inui K ichi. Am J Physiol Cell Physiol. 2008 Sep;295(3):C632-41. PubMed Europe PMC Scholia
  7. Brown-Vialetto-Van Laere syndrome, a ponto-bulbar palsy with deafness, is caused by mutations in c20orf54. Green P, Wiseman M, Crow YJ, Houlden H, Riphagen S, Lin JP, et al. Am J Hum Genet. 2010 Mar 12;86(3):485–9. PubMed Europe PMC Scholia
  8. Identification and comparative functional characterization of a new human riboflavin transporter hRFT3 expressed in the brain. Yao Y, Yonezawa A, Yoshimatsu H, Masuda S, Katsura T, Inui KI. J Nutr. 2010 Jul;140(7):1220–6. PubMed Europe PMC Scholia
  9. Brown-Vialetto-Van Laere and Fazio Londe syndrome is associated with a riboflavin transporter defect mimicking mild MADD: a new inborn error of metabolism with potential treatment. Bosch AM, Abeling NGGM, Ijlst L, Knoester H, van der Pol WL, Stroomer AEM, et al. J Inherit Metab Dis. 2011 Feb;34(1):159–64. PubMed Europe PMC Scholia
  10. Biosynthesis of flavin cofactors in man: implications in health and disease. Barile M, Giancaspero TA, Brizio C, Panebianco C, Indiveri C, Galluccio M, et al. Curr Pharm Des. 2013;19(14):2649–75. PubMed Europe PMC Scholia
  11. Functional involvement of RFVT3/SLC52A3 in intestinal riboflavin absorption. Yoshimatsu H, Yonezawa A, Yao Y, Sugano K, Nakagawa S, Omura T, et al. Am J Physiol Gastrointest Liver Physiol. 2014 Jan;306(2):G102-10. PubMed Europe PMC Scholia
  12. Mitochondrial ADCK3 employs an atypical protein kinase-like fold to enable coenzyme Q biosynthesis. Stefely JA, Reidenbach AG, Ulbrich A, Oruganty K, Floyd BJ, Jochem A, et al. Mol Cell. 2015 Jan 8;57(1):83–94. PubMed Europe PMC Scholia