SARS-CoV-2 and COVID-19 pathway (WP4846)
Homo sapiens
Collaborative project for curation biological processes involved in the COVID-19 disease after SARS-Cov-2 infection. It focuses on experimental evidence and plays with improved annotation of complexes and with the Evidence and Conclusion Ontology. The complexes link to EBI's Complex Portal, resulting from a collaboration with that database at the recent online ELIXIR biohackathon. Editing this pathway is (at this moment) coordinated via the wikipathways.slack.com #sarscov2 channel. Additionally, please feel free to add suggestions to the discussion page (see the tab at the top of this page). The large viral Spike protein (S or surface glycoprotein) forms trimers. It interacts with the host's ACE2 receptor to establish binding (Hoffmann et al 2020). There are suggestions for more than one cell entry mechanism, with the evidence for ACE2/TMPRSS2 entry being most clear now. Lack of expression of TMPRSS2 may explain age differences in COVID19 severity. In this mechanism, to enter the virus needs to be primed by the host protease TMPRSS2 that splits the Spike protein into 2 peptides S1 and S2. S1 contains the ACE2 receptor binding site, S2 binds to the host cell membrane which leads to membrane fusion, the start of the uptake process. The ACE2 receptor interaction was also suggested as the start of specific lung-damaging effects. Other human genes that may be involved in alternative cell uptake mechanisms include CTSL and SLC6A19.
Authors
Egon Willighagen , Lauren J. Dupuis , Chris Evelo , Alex Pico , Friederike Ehrhart , Martina Summer-Kutmon , and Eric WeitzActivity
Discuss this pathway
Check for ongoing discussions or start your own.
Cited In
- Multi-Data Integration Towards a Global Understanding of the Neurological Impact of Human Brain Severe Acute Respiratory Syndrome Coronavirus 2 Infection (2022).
- A protocol for adding knowledge to Wikidata: aligning resources on human coronaviruses (2021).
- Characterization of the SARS-CoV-2 co-receptor NRP1 expression profiles in healthy people and cancer patients: Implication for susceptibility to COVID-19 disease and potential therapeutic strategy (2022).
- Social Determinants of Health Factors for Gene–Environment COVID‐19 Research: Challenges and Opportunities (2022).
- Tissue-specific pathway activities: A retrospective analysis in COVID-19 patients (2022).
- The Influence of KE and EW Dipeptides in the Composition of the Thymalin Drug on Gene Expression and Protein Synthesis Involved in the Pathogenesis of COVID-19 (2023).
- Investigating the Potential Shared Molecular Mechanisms between COVID-19 and Alzheimer’s Disease via Transcriptomic Analysis (2023).
Are you planning to include this pathway in your next publication? See How to Cite and add a link here to your paper once it's online.
Organisms
Homo sapiensCommunities
COVID-19Annotations
Pathway Ontology
disease pathwayDisease Ontology
COVID-19 disease by infectious agentLabel | Type | Compact URI | Comment |
---|---|---|---|
25HC | Metabolite | chebi:42977 | |
HDL | Metabolite | chebi:39025 | |
heparan sulfate | Metabolite | chebi:28815 | |
sphingosine | Metabolite | chebi:16393 | |
cholesterol | Metabolite | chebi:16113 | |
SCARB1 | GeneProduct | ensembl:ENSG00000073060 | |
SLC6A19 | GeneProduct | ensembl:ENSG00000174358 | |
ACAT | GeneProduct | ensembl:ENSG00000075239 | |
orf1 | GeneProduct | ncbigene:43740578 | |
ORF3a | GeneProduct | ncbigene:43740569 | |
ORF6 | GeneProduct | ncbigene:43740572 | |
ORF7a | GeneProduct | ncbigene:43740573 | |
ORF8 | GeneProduct | ncbigene:43740577 | |
ORF10 | GeneProduct | ncbigene:43740576 | |
nucleocapsidphosphoprotein | GeneProduct | ncbigene:43740575 | |
membraneglycoprotein | GeneProduct | ncbigene:43740571 | |
envelopeprotein | GeneProduct | ncbigene:43740570 | |
surfaceglycoprotein | GeneProduct | ncbigene:43740568 | |
ORF7b | GeneProduct | ncbigene:43740574 | |
surfaceglycoprotein S | Protein | uniprot:P0DTC2 | |
nsp1 | Protein | wikidata:Q90038952 | Host translation inhibitor nsp1 |
CTSL | Protein | uniprot:P07711 | |
TLR7 | Protein | uniprot:Q9NYK1 | |
TMPRSS4 | Protein | uniprot:Q9NRS4 | |
FURIN | Protein | uniprot:P09958 | |
S2 subunit | Protein | wikidata:Q106020384 | |
SARS-CoV-2proteins | Protein | wikidata:Q82069695 | |
orf1a | Protein | uniprot:P0DTC1 | |
TMPRSS2 | Protein | uniprot:O15393 | |
orf1ab | Protein | uniprot:P0DTD1 | |
ACE2 | Protein | uniprot:Q9BYF1 | |
ORF3a | Protein | uniprot:P0DTC3 | |
ORF6 | Protein | wikidata:Q89226299 | |
ORF7a | Protein | wikidata:Q88658500 | |
ORF8 | Protein | wikidata:Q89225654 | |
nucleocapsidprotein | Protein | uniprot:P0DTC9 | |
membraneglycoprotein | Protein | uniprot:P0DTC5 | |
envelopeprotein | Protein | uniprot:P0DTC4 | |
surfaceglycoprotein | Protein | uniprot:P0DTC2 | |
membraneglycoprotein M | Protein | uniprot:P0DTC5 | |
nsp2 | Protein | wikidata:Q89006922 | |
PL2-PRO | Protein | wikidata:Q87917581 | nsp3 |
3CL-PRO | Protein | wikidata:Q87917582 | |
nsp4 | Protein | wikidata:Q90038956 | |
nsp7 | Protein | wikidata:Q90038963 | |
nsp8 | Protein | wikidata:Q88659350 | |
nsp9 | Protein | wikidata:Q89686805 | |
nsp10 | Protein | wikidata:Q87917572 | nsp10 |
nsp12 | Protein | wikidata:Q94647436 | RdRp |
nsp13 | Protein | wikidata:Q94648377 | Helicase |
ExoN | Protein | wikidata:Q94648393 | nsp14 |
nsp15 | Protein | wikidata:Q87917579 | NendoU |
nsp16 | Protein | wikidata:Q87917579 | 2'-O-methyltransferase |
nsp6 | Protein | wikidata:Q88656943 | |
nsp5 | Protein | wikidata:Q87917582 | |
nucleocapsidprotein N | Protein | uniprot:P0DTC9 | |
envelopeprotein E | Protein | uniprot:P0DTC4 | |
ORF10 | Protein | wikidata:Q89227548 | |
ORF7b | Protein | wikidata:Q88089438 | |
ORF14 | Protein | uniprot:P0DTD3 | |
NRP1 | Protein | uniprot:O14786 |
References
- Severe acute respiratory syndrome coronavirus nonstructural proteins 3, 4, and 6 induce double-membrane vesicles. Angelini MM, Akhlaghpour M, Neuman BW, Buchmeier MJ. mBio. 2013 Aug 13;4(4):e00524-13. PubMed Europe PMC Scholia
- Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS. Intensive Care Med. 2020 Apr;46(4):586–90. PubMed Europe PMC Scholia
- A potential role for integrins in host cell entry by SARS-CoV-2. Sigrist CJ, Bridge A, Le Mercier P. Antiviral Res. 2020 May;177:104759. PubMed Europe PMC Scholia
- Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Science. 2020 Mar 27;367(6485):1444–8. PubMed Europe PMC Scholia
- SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. Cell. 2020 Apr 16;181(2):271-280.e8. PubMed Europe PMC Scholia
- Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Cell. 2020 Apr 16;181(2):281-292.e6. PubMed Europe PMC Scholia
- From SARS and MERS CoVs to SARS-CoV-2: Moving toward more biased codon usage in viral structural and nonstructural genes. Kandeel M, Ibrahim A, Fayez M, Al-Nazawi M. J Med Virol. 2020 Jun;92(6):660–6. PubMed Europe PMC Scholia
- Genetic evolution analysis of 2019 novel coronavirus and coronavirus from other species. Li C, Yang Y, Ren L. Infect Genet Evol. 2020 Aug;82:104285. PubMed Europe PMC Scholia
- Remdesivir and SARS-CoV-2: Structural requirements at both nsp12 RdRp and nsp14 Exonuclease active-sites. Shannon A, Le NTT, Selisko B, Eydoux C, Alvarez K, Guillemot JC, et al. Antiviral Res. 2020 Jun;178:104793. PubMed Europe PMC Scholia
- Emerging SARS-CoV-2 mutation hot spots include a novel RNA-dependent-RNA polymerase variant. Pachetti M, Marini B, Benedetti F, Giudici F, Mauro E, Storici P, et al. J Transl Med. 2020 Apr 22;18(1):179. PubMed Europe PMC Scholia
- Cell entry mechanisms of SARS-CoV-2. Shang J, Wan Y, Luo C, Ye G, Geng Q, Auerbach A, et al. Proc Natl Acad Sci U S A. 2020 May 26;117(21):11727–34. PubMed Europe PMC Scholia
- TMPRSS2 and TMPRSS4 promote SARS-CoV-2 infection of human small intestinal enterocytes. Zang R, Gomez Castro MF, McCune BT, Zeng Q, Rothlauf PW, Sonnek NM, et al. Sci Immunol. 2020 May 13;5(47):eabc3582. PubMed Europe PMC Scholia
- Structure of replicating SARS-CoV-2 polymerase. Hillen HS, Kokic G, Farnung L, Dienemann C, Tegunov D, Cramer P. Nature. 2020 Aug;584(7819):154–6. PubMed Europe PMC Scholia
- Simultaneous Treatment of COVID-19 With Serine Protease Inhibitor Camostat and/or Cathepsin L Inhibitor? Bittmann S, Weissenstein A, Villalon G, Moschuring-Alieva E, Luchter E. J Clin Med Res. 2020 May;12(5):320–2. PubMed Europe PMC Scholia
- The crystal structure of nsp10-nsp16 heterodimer from SARS-CoV-2 in complex with S-adenosylmethionine. Rosas-Lemus M, Minasov G, Shuvalova L, Inniss NL, Kiryukhina O, Wiersum G, et al. bioRxiv. 2020 Apr 26;2020.04.17.047498. PubMed Europe PMC Scholia
- Chemistry and Biology of SARS-CoV-2. Dömling A, Gao L. Chem. 2020 Jun 11;6(6):1283–95. PubMed Europe PMC Scholia
- Crystal Structure of the SARS-CoV-2 Non-structural Protein 9, Nsp9. Littler DR, Gully BS, Colson RN, Rossjohn J. iScience. 2020 Jul 24;23(7):101258. PubMed Europe PMC Scholia
- Characterization of heparin and severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) spike glycoprotein binding interactions. Kim SY, Jin W, Sood A, Montgomery DW, Grant OC, Fuster MM, et al. Antiviral Res. 2020 Sep;181:104873. PubMed Europe PMC Scholia
- Does the human placenta express the canonical cell entry mediators for SARS-CoV-2? Pique-Regi R, Romero R, Tarca AL, Luca F, Xu Y, Alazizi A, et al. Elife. 2020 Jul 14;9:e58716. PubMed Europe PMC Scholia
- Structural basis for translational shutdown and immune evasion by the Nsp1 protein of SARS-CoV-2. Thoms M, Buschauer R, Ameismeier M, Koepke L, Denk T, Hirschenberger M, et al. Science. 2020 Sep 4;369(6508):1249–55. PubMed Europe PMC Scholia
- Presence of Genetic Variants Among Young Men With Severe COVID-19. van der Made CI, Simons A, Schuurs-Hoeijmakers J, van den Heuvel G, Mantere T, Kersten S, et al. JAMA. 2020 Aug 18;324(7):663–73. PubMed Europe PMC Scholia
- Sphingosine prevents binding of SARS-CoV-2 spike to its cellular receptor ACE2. Edwards MJ, Becker KA, Gripp B, Hoffmann M, Keitsch S, Wilker B, et al. J Biol Chem. 2020 Nov 6;295(45):15174–82. PubMed Europe PMC Scholia
- The Enzymatic Activity of the nsp14 Exoribonuclease Is Critical for Replication of MERS-CoV and SARS-CoV-2. Ogando NS, Zevenhoven-Dobbe JC, van der Meer Y, Bredenbeek PJ, Posthuma CC, Snijder EJ. J Virol. 2020 Nov 9;94(23):e01246-20. PubMed Europe PMC Scholia
- Cholesterol 25-Hydroxylase inhibits SARS-CoV-2 and other coronaviruses by depleting membrane cholesterol. Wang S, Li W, Hui H, Tiwari SK, Zhang Q, Croker BA, et al. EMBO J. 2020 Nov 2;39(21):e106057. PubMed Europe PMC Scholia
- SARS-CoV-2 Infection Depends on Cellular Heparan Sulfate and ACE2. Clausen TM, Sandoval DR, Spliid CB, Pihl J, Perrett HR, Painter CD, et al. Cell. 2020 Nov 12;183(4):1043-1057.e15. PubMed Europe PMC Scholia
- Identification of novel mutations in the methyltransferase complex (Nsp10-Nsp16) of SARS-CoV-2. Azad GK. Biochem Biophys Rep. 2020 Dec;24:100833. PubMed Europe PMC Scholia
- Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Cantuti-Castelvetri L, Ojha R, Pedro LD, Djannatian M, Franz J, Kuivanen S, et al. Science. 2020 Nov 13;370(6518):856–60. PubMed Europe PMC Scholia
- Mutations of SARS-CoV-2 nsp14 exhibit strong association with increased genome-wide mutation load. Eskier D, Suner A, Oktay Y, Karakülah G. PeerJ. 2020 Oct 12;8:e10181. PubMed Europe PMC Scholia
- HDL-scavenger receptor B type 1 facilitates SARS-CoV-2 entry. Wei C, Wan L, Yan Q, Wang X, Zhang J, Yang X, et al. Nat Metab. 2020 Dec;2(12):1391–400. PubMed Europe PMC Scholia