Lipid metabolism pathway (WP3965)

Homo sapiens

Lipid metabolism is the break down or storage of fats for energy. These fats are obtained from food or synthesized by an animal's liver. Lipid metabolism occurs in plants, though the processes differ in some ways compared to animals. Lipogenesis is the process of synthesizing fats. Lipid metabolism often begins with hydrolysis, which occurs when a chemical breaks down as a reaction to coming in contact with water. Since lipids (fats) are hydrophobic, hydrolysis in lipid metabolism occurs in the cytoplasm which ends up creating glycerol and fatty acids. Due to the hydrophobic nature of lipids they require special transport proteins known as lipoproteins, which are hydrophilic. Lipoproteins are categorized by their density levels. The varying densities between the types of lipoproteins are characteristic to what type of fats they transport. Some lipoproteins are synthesized in the liver; others originate elsewhere. Description source: [https://en.wikipedia.org/wiki/Lipid_metabolism Wikipedia] Proteins on this pathway have targeted assays available via the [https://assays.cancer.gov/available_assays?wp_id=WP3965 CPTAC Assay Portal]

Authors

Martina Summer-Kutmon , Susan Coort , Egon Willighagen , Kristina Hanspers , and Eric Weitz

Activity

last edited

Discuss this pathway

Check for ongoing discussions or start your own.

Cited In

Are you planning to include this pathway in your next publication? See How to Cite and add a link here to your paper once it's online.

Organisms

Homo sapiens

Communities

Annotations

Disease Ontology

obesity

Cell Type Ontology

white fat cell

Pathway Ontology

lipid metabolic pathway

Participants

Label Type Compact URI Comment
BCAA Metabolite chebi:22918 Branched-chain amino acid
BCFA Metabolite chebi:35819 Branched-chain fatty acid
Pyruvate Metabolite chebi:15361
Acetyl-CoA (mit) Metabolite chebi:15351
Citrate Metabolite chebi:35804
Acetyl-CoA (cyt) Metabolite chebi:15351
Malonyl-CoA Metabolite chebi:15531
Palimitate Metabolite chebi:15756
Palimitate-CoA Metabolite chebi:15525
Acetate Metabolite chebi:30089
TAG Metabolite chebi:17855 Triglyceride
DAG Metabolite chebi:18035 Diglyceride
MAG Metabolite chebi:17408 Monoglyceride
Free fatty acids Metabolite chebi:35366
AKT3 GeneProduct ensembl:ENSG00000117020
PLIN1 GeneProduct ensembl:ENSG00000166819 PeriA
HILPDA GeneProduct ensembl:ENSG00000135245
PNPLA2 GeneProduct ensembl:ENSG00000177666 ATGL
LIPE GeneProduct ensembl:ENSG00000079435 HSL
P:S964
ACACA GeneProduct ensembl:ENSG00000278540 P:S23,P:S29,P:S79,P:S47,P:S49
PRKAG3 GeneProduct ensembl:ENSG00000115592
PDHA1 GeneProduct ensembl:ENSG00000131828
PRKAG1 GeneProduct ensembl:ENSG00000181929
ABHD5 GeneProduct ensembl:ENSG00000011198 P:S81
BCKDHA GeneProduct ensembl:ENSG00000248098
FASN GeneProduct ensembl:ENSG00000169710
ACLY GeneProduct ensembl:ENSG00000131473 P:S455,P:S653,P:S1090
PRKAA1 GeneProduct ensembl:ENSG00000132356
ACSS2 GeneProduct ensembl:ENSG00000131069 P:S30,P:S263,P:S267
PRKAB2 GeneProduct ensembl:ENSG00000131791
AKT2 GeneProduct ensembl:ENSG00000105221
PRKAB1 GeneProduct ensembl:ENSG00000111725
PRKAA2 GeneProduct ensembl:ENSG00000162409
AKT1 GeneProduct ensembl:ENSG00000142208
PRKAG2 GeneProduct ensembl:ENSG00000106617
ACSBG1 GeneProduct ensembl:ENSG00000103740 P:S79
PRKACG GeneProduct ensembl:ENSG00000165059
PRKACA GeneProduct ensembl:ENSG00000072062
PRKAR1A GeneProduct ensembl:ENSG00000108946
PRKAR2B GeneProduct ensembl:ENSG00000005249
PRKAR2A GeneProduct ensembl:ENSG00000114302
PRKAR1B GeneProduct ensembl:ENSG00000188191
PRKACB GeneProduct ensembl:ENSG00000142875

References

  1. FSP27 and PLIN1 interaction promotes the formation of large lipid droplets in human adipocytes. Grahn THM, Zhang Y, Lee MJ, Sommer AG, Mostoslavsky G, Fried SK, et al. Biochem Biophys Res Commun. 2013 Mar 8;432(2):296–301. PubMed Europe PMC Scholia
  2. Phosphoprotein network analysis of white adipose tissues unveils deregulated pathways in response to high-fat diet. Shaik AA, Qiu B, Wee S, Choi H, Gunaratne J, Tergaonkar V. Sci Rep. 2016 May 16;6:25844. PubMed Europe PMC Scholia
  3. Inhibition of intracellular lipolysis promotes human cancer cell adaptation to hypoxia. Zhang X, Saarinen AM, Hitosugi T, Wang Z, Wang L, Ho TH, et al. Elife. 2017 Dec 19;6:e31132. PubMed Europe PMC Scholia