Lipid metabolism pathway (WP3965)
Homo sapiens
Lipid metabolism is the break down or storage of fats for energy. These fats are obtained from food or synthesized by an animal's liver. Lipid metabolism occurs in plants, though the processes differ in some ways compared to animals. Lipogenesis is the process of synthesizing fats. Lipid metabolism often begins with hydrolysis, which occurs when a chemical breaks down as a reaction to coming in contact with water. Since lipids (fats) are hydrophobic, hydrolysis in lipid metabolism occurs in the cytoplasm which ends up creating glycerol and fatty acids. Due to the hydrophobic nature of lipids they require special transport proteins known as lipoproteins, which are hydrophilic. Lipoproteins are categorized by their density levels. The varying densities between the types of lipoproteins are characteristic to what type of fats they transport. Some lipoproteins are synthesized in the liver; others originate elsewhere. Description source: [https://en.wikipedia.org/wiki/Lipid_metabolism Wikipedia] Proteins on this pathway have targeted assays available via the [https://assays.cancer.gov/available_assays?wp_id=WP3965 CPTAC Assay Portal]
Authors
Martina Summer-Kutmon , Susan Coort , Egon Willighagen , Kristina Hanspers , and Eric WeitzActivity
Discuss this pathway
Check for ongoing discussions or start your own.
Cited In
Are you planning to include this pathway in your next publication? See How to Cite and add a link here to your paper once it's online.
Organisms
Homo sapiensCommunities
Annotations
Disease Ontology
obesityPathway Ontology
lipid metabolic pathwayCell Type Ontology
white fat cellLabel | Type | Compact URI | Comment |
---|---|---|---|
BCAA | Metabolite | chebi:22918 | Branched-chain amino acid |
BCFA | Metabolite | chebi:35819 | Branched-chain fatty acid |
Pyruvate | Metabolite | chebi:15361 | |
Acetyl-CoA (mit) | Metabolite | chebi:15351 | |
Citrate | Metabolite | chebi:30769 | |
Acetyl-CoA (cyt) | Metabolite | chebi:15351 | |
Malonyl-CoA | Metabolite | chebi:15531 | |
Palimitate | Metabolite | chebi:15756 | |
Palimitate-CoA | Metabolite | chebi:15525 | |
Acetate | Metabolite | chebi:30089 | |
TAG | Metabolite | chebi:17855 | Triglyceride |
DAG | Metabolite | chebi:18035 | Diglyceride |
MAG | Metabolite | chebi:17408 | Monoglyceride |
Free fatty acids | Metabolite | chebi:35366 | |
AKT3 | GeneProduct | ensembl:ENSG00000117020 | |
PLIN1 | GeneProduct | ensembl:ENSG00000166819 | PeriA |
HILPDA | GeneProduct | ensembl:ENSG00000135245 | |
PNPLA2 | GeneProduct | ensembl:ENSG00000177666 | ATGL |
LIPE | GeneProduct | ensembl:ENSG00000079435 | HSLP:S964 |
ACACA | GeneProduct | ensembl:ENSG00000278540 | P:S23,P:S29,P:S79,P:S47,P:S49 |
PRKAG3 | GeneProduct | ensembl:ENSG00000115592 | |
PDHA1 | GeneProduct | ensembl:ENSG00000131828 | |
PRKAG1 | GeneProduct | ensembl:ENSG00000181929 | |
ABHD5 | GeneProduct | ensembl:ENSG00000011198 | P:S81 |
BCKDHA | GeneProduct | ensembl:ENSG00000248098 | |
FASN | GeneProduct | ensembl:ENSG00000169710 | |
ACLY | GeneProduct | ensembl:ENSG00000131473 | P:S455,P:S653,P:S1090 |
PRKAA1 | GeneProduct | ensembl:ENSG00000132356 | |
ACSS2 | GeneProduct | ensembl:ENSG00000131069 | P:S30,P:S263,P:S267 |
PRKAB2 | GeneProduct | ensembl:ENSG00000131791 | |
AKT2 | GeneProduct | ensembl:ENSG00000105221 | |
PRKAB1 | GeneProduct | ensembl:ENSG00000111725 | |
PRKAA2 | GeneProduct | ensembl:ENSG00000162409 | |
AKT1 | GeneProduct | ensembl:ENSG00000142208 | |
PRKAG2 | GeneProduct | ensembl:ENSG00000106617 | |
ACSBG1 | GeneProduct | ensembl:ENSG00000103740 | P:S79 |
PRKACG | GeneProduct | ensembl:ENSG00000165059 | |
PRKACA | GeneProduct | ensembl:ENSG00000072062 | |
PRKAR1A | GeneProduct | ensembl:ENSG00000108946 | |
PRKAR2B | GeneProduct | ensembl:ENSG00000005249 | |
PRKAR2A | GeneProduct | ensembl:ENSG00000114302 | |
PRKAR1B | GeneProduct | ensembl:ENSG00000188191 | |
PRKACB | GeneProduct | ensembl:ENSG00000142875 |
References
- FSP27 and PLIN1 interaction promotes the formation of large lipid droplets in human adipocytes. Grahn THM, Zhang Y, Lee MJ, Sommer AG, Mostoslavsky G, Fried SK, et al. Biochem Biophys Res Commun. 2013 Mar 8;432(2):296–301. PubMed Europe PMC Scholia
- Phosphoprotein network analysis of white adipose tissues unveils deregulated pathways in response to high-fat diet. Shaik AA, Qiu B, Wee S, Choi H, Gunaratne J, Tergaonkar V. Sci Rep. 2016 May 16;6:25844. PubMed Europe PMC Scholia
- Inhibition of intracellular lipolysis promotes human cancer cell adaptation to hypoxia. Zhang X, Saarinen AM, Hitosugi T, Wang Z, Wang L, Ho TH, et al. Elife. 2017 Dec 19;6:e31132. PubMed Europe PMC Scholia