Cytosine methylation (WP3585)
Homo sapiens
DNA, namely cytosine, methylation is the key event in epigentics. The degree of methylation influences gene expression and methylation disorders are known to be major causes of some diseases like Rett syndrome and some cancer types. Epigenetic effects also contribute to the development of Alzheimers' disease, developmental retardation by alcohol, Huntington's disease and ischemia-reperfusion injury. Methylation is not a static event but a highly dynamic and therefore highly regulated procedure. Cytosine is methylated by DNA methyltransferases (DNMTs) forming 5-methylcytosine (5mC). In a second step, 5mC is transformed to 5-hydroxymethylcytosine (5hmC) by ten-eleven-translocation enzymes (TET1-3). These enzymes are sensitive to regulation by a variety of metabolites (ethanol, a-ketoglutarate, 2-hydroxyglutarate), miRNA and MeCP2 (targeting directly TET1). Proteins binding methylated DNA like MeCP2 or Mbd3 (as part of the NURD complex) also inhibit the conversion by blocking the target. MeCP2 also binds on 5hmC and block the transition to 5-formylcytosine (5fC) which is also catalyzed by the TET enzymes. The conversion back to cytosine is done by tymine DNA glycosylase (TGD) and base excision repair mechanism either directly or over another TET catalyzed step forming 5-carboxylcytosine (5caC).
Authors
Friederike Ehrhart , Susan Coort , Martina Summer-Kutmon , and Egon WillighagenActivity
Discuss this pathway
Check for ongoing discussions or start your own.
Cited In
- Shared Genetic Risk Factors Between Cancer and Cardiovascular Diseases (2022).
- Rett syndrome – biological pathways leading from MECP2 to disorder phenotypes (2016).
Are you planning to include this pathway in your next publication? See How to Cite and add a link here to your paper once it's online.
Organisms
Homo sapiensCommunities
Annotations
Pathway Ontology
regulatory pathwayLabel | Type | Compact URI | Comment |
---|---|---|---|
5-methylcytosine | Metabolite | hmdb:HMDB0002894 | |
ethanol | Metabolite | chebi:16236 | |
a-ketoglutarate | Metabolite | chebi:16810 | synonym oxoglutarate |
isocitrate | Metabolite | chebi:36453 | |
5-carboxylcytosine | Metabolite | chebi:76793 | |
2-hydroxyglutarate | Metabolite | chebi:11596 | |
5-formylcytosine | Metabolite | chebi:76794 | |
5-hydroxymethylcytosine | Metabolite | chebi:76792 | |
cytosine | Metabolite | chebi:16040 | |
MECP2 | Protein | uniprot:P51608 | |
MBD3 | Protein | uniprot:O95983 | as part of the NuRD complex |
IDH1 | Protein | uniprot:O75874 | |
TET2 | Protein | uniprot:Q6N021 | |
DNMT1 | Protein | uniprot:P26358 | |
TET3 | Protein | uniprot:K9JJH7 | |
TET1 | Protein | uniprot:Q8NFU7 | |
TDG | Protein | uniprot:Q13569 | |
IDH2 | Protein | uniprot:P48735 |
References
- 5-Hydroxymethylcytosine and disease. Wang J, Tang J, Lai M, Zhang H. Mutat Res Rev Mutat Res. 2014;762:167–75. PubMed Europe PMC Scholia