Iron metabolism in placenta (WP2007)

Homo sapiens

During pregnancy, iron is transported from mother to fetus across the placenta. Iron is essential for many biological processes, including the transfer of oxygen in blood, but it can also be toxic. Elaborate and elegant mechanisms have evolved to make sure that the potential for oxidative damage is minimized. This description of Iron pathway through the placenta, and its regulation is purposed to understand the effect of Iron deficiency or Iron overload of the mother on the fetus. Proteins on this pathway have targeted assays available via the [https://assays.cancer.gov/available_assays?wp_id=WP2007 CPTAC Assay Portal]

Authors

Jerome Compain , Kristina Hanspers , Martijn Van Iersel , Chris Evelo , Daniela Digles , Egon Willighagen , and Andika Tan

Activity

last edited

Discuss this pathway

Check for ongoing discussions or start your own.

Cited In

Are you planning to include this pathway in your next publication? See How to Cite and add a link here to your paper once it's online.

Organisms

Homo sapiens

Communities

Micronutrients

Annotations

Pathway Ontology

iron transport pathway iron homeostasis pathway

Participants

Label Type Compact URI Comment
FeII Metabolite cas:15438-31-0
FeIII Metabolite cas:20074-52-6
SLC40A1 GeneProduct ensembl:ENSG00000138449
IREB2 GeneProduct ensembl:ENSG00000136381
HEPHL1 GeneProduct ensembl:ENSG00000181333
IRP1 GeneProduct ensembl:ENSG00000122729
STEAP3 GeneProduct ensembl:ENSG00000115107
SLC11A2 GeneProduct ensembl:ENSG00000110911
MCOLN1 GeneProduct ensembl:ENSG00000090674
TFR2 GeneProduct ensembl:ENSG00000106327 Transferrin receptor
foetal HAMP? Protein ensembl:ENSG00000105697 HAMP
TF Protein ensembl:ENSG00000091513 Transferrin
HAMP Protein ensembl:ENSG00000105697
TFR1 Protein ensembl:ENSG00000072274 Transferrin receptor
foetal TF Protein ensembl:ENSG00000091513 Transferrin

References

  1. Transferrin receptor expression in the human placenta. Bergamaschi G, Bergamaschi P, Carlevati S, Cazzola M. Haematologica. 1990;75(3):220–3. PubMed Europe PMC Scholia
  2. The coefficient of saturation of iron in transferrin. Dezier JF, Vernet M, Damour O, Guillemin G, Le Treut A, Paris M, et al. Ann Biol Clin (Paris). 1988;46(8):692–5. PubMed Europe PMC Scholia
  3. The formation of ferritin from apoferritin. Kinetics and mechanism of iron uptake. Macara IG, Hoy TG, Harrison PM. Biochem J. 1972 Jan;126(1):151–62. PubMed Europe PMC Scholia
  4. Effects of overexpression of the transferrin receptor on the rates of transferrin recycling and uptake of non-transferrin-bound iron. Callus BA, Iacopetta BJ, Kühn LC, Morgan EH. Eur J Biochem. 1996 Jun 1;238(2):463–9. PubMed Europe PMC Scholia
  5. Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Gunshin H, Mackenzie B, Berger UV, Gunshin Y, Romero MF, Boron WF, et al. Nature. 1997 Jul 31;388(6641):482–8. PubMed Europe PMC Scholia
  6. Increased placental iron regulatory protein-1 expression in diabetic pregnancies complicated by fetal iron deficiency. Georgieff MK, Berry SA, Wobken JD, Leibold EA. Placenta. 1999 Jan;20(1):87–93. PubMed Europe PMC Scholia
  7. Mechanisms of iron mediated regulation of the duodenal iron transporters divalent metal transporter 1 and ferroportin 1. Zoller H, Theurl I, Koch R, Kaser A, Weiss G. Blood Cells Mol Dis. 2002;29(3):488–97. PubMed Europe PMC Scholia
  8. Duodenal cytochrome b and hephaestin expression in patients with iron deficiency and hemochromatosis. Zoller H, Theurl I, Koch RO, McKie AT, Vogel W, Weiss G. Gastroenterology. 2003 Sep;125(3):746–54. PubMed Europe PMC Scholia
  9. The putative “nucleation site” in human H-chain ferritin is not required for mineralization of the iron core. Bou-Abdallah F, Biasiotto G, Arosio P, Chasteen ND. Biochemistry. 2004 Apr 13;43(14):4332–7. PubMed Europe PMC Scholia
  10. Unique iron binding and oxidation properties of human mitochondrial ferritin: a comparative analysis with Human H-chain ferritin. Bou-Abdallah F, Santambrogio P, Levi S, Arosio P, Chasteen ND. J Mol Biol. 2005 Apr 1;347(3):543–54. PubMed Europe PMC Scholia
  11. Identification of a ferrireductase required for efficient transferrin-dependent iron uptake in erythroid cells. Ohgami RS, Campagna DR, Greer EL, Antiochos B, McDonald A, Chen J, et al. Nat Genet. 2005 Nov;37(11):1264–9. PubMed Europe PMC Scholia
  12. Recombinant expression and functional characterization of human hephaestin: a multicopper oxidase with ferroxidase activity. Griffiths TAM, Mauk AG, MacGillivray RTA. Biochemistry. 2005 Nov 15;44(45):14725–31. PubMed Europe PMC Scholia
  13. Neither human hephaestin nor ceruloplasmin forms a stable complex with transferrin. Hudson DM, Krisinger MJ, Griffiths TAM, Macgillivray RTA. J Cell Biochem. 2008 Apr 15;103(6):1849–55. PubMed Europe PMC Scholia
  14. The type IV mucolipidosis-associated protein TRPML1 is an endolysosomal iron release channel. Dong XP, Cheng X, Mills E, Delling M, Wang F, Kurz T, et al. Nature. 2008 Oct 16;455(7215):992–6. PubMed Europe PMC Scholia
  15. A general map of iron metabolism and tissue-specific subnetworks. Hower V, Mendes P, Torti FM, Laubenbacher R, Akman S, Shulaev V, et al. Mol Biosyst. 2009 May;5(5):422–43. PubMed Europe PMC Scholia
  16. Iron absorption and metabolism. Anderson GJ, Frazer DM, McLaren GD. Curr Opin Gastroenterol. 2009 Mar;25(2):129–35. PubMed Europe PMC Scholia
  17. Transferrin-directed internalization and cycling of transferrin receptor 2. Chen J, Wang J, Meyers KR, Enns CA. Traffic. 2009 Oct;10(10):1488–501. PubMed Europe PMC Scholia
  18. Loss of myosin VI no insert isoform (NoI) induces a defect in clathrin-mediated endocytosis and leads to caveolar endocytosis of transferrin receptor. Puri C. J Biol Chem. 2009 Dec 11;284(50):34998–5014. PubMed Europe PMC Scholia
  19. Unraveling of the E-helices and disruption of 4-fold pores are associated with iron mishandling in a mutant ferritin causing neurodegeneration. Baraibar MA, Muhoberac BB, Garringer HJ, Hurley TD, Vidal R. J Biol Chem. 2010 Jan 15;285(3):1950–6. PubMed Europe PMC Scholia
  20. Identification of zyklopen, a new member of the vertebrate multicopper ferroxidase family, and characterization in rodents and human cells. Chen H, Attieh ZK, Syed BA, Kuo YM, Stevens V, Fuqua BK, et al. J Nutr. 2010 Oct;140(10):1728–35. PubMed Europe PMC Scholia
  21. Transferrin receptor gene and protein expression and localization in human IUGR and normal term placentas. Mandò C, Tabano S, Colapietro P, Pileri P, Colleoni F, Avagliano L, et al. Placenta. 2011 Jan;32(1):44–50. PubMed Europe PMC Scholia
  22. Kinetic evidence that Glut4 follows different endocytic pathways than the receptors for transferrin and alpha2-macroglobulin. Habtemichael EN, Brewer PD, Romenskaia I, Mastick CC. J Biol Chem. 2011 Mar 25;286(12):10115–25. PubMed Europe PMC Scholia
  23. Hepcidin and iron regulation, 10 years later. Ganz T. Blood. 2011 Apr 28;117(17):4425–33. PubMed Europe PMC Scholia
  24. Fetal regulation of iron transport during pregnancy. Gambling L, Lang C, McArdle HJ. Am J Clin Nutr. 2011 Dec;94(6 Suppl):1903S-1907S. PubMed Europe PMC Scholia
  25. Iron regulatory protein 1 outcompetes iron regulatory protein 2 in regulating cellular iron homeostasis in response to nitric oxide. Styś A, Galy B, Starzyński RR, Smuda E, Drapier JC, Lipiński P, et al. J Biol Chem. 2011 Jul 1;286(26):22846–54. PubMed Europe PMC Scholia
  26. Kinetics of iron release from transferrin bound to the transferrin receptor at endosomal pH. Steere AN, Byrne SL, Chasteen ND, Mason AB. Biochim Biophys Acta. 2012 Mar;1820(3):326–33. PubMed Europe PMC Scholia