Pathways into methionine and folate cycles (WP5488)

Homo sapiens

Cobalamin (B12) and folate (B9) are two B vitamins that are essential for the folate cycle and methionine cycle, which are part of one-carbon metabolism. The folate cycle is located in the cytoplasm and mitochondria, and uses serine and glycine as inputs. The folate cycle is dependent on B12 to generate the active forms of vitamin B9. The methionine cycle requires methionine to produce cysteine, which is a key component of the trans-sulfuration pathway. The enzyme methionine synthase uses B12 as a cofactor to convert homocysteine to methionine.

Authors

Alexmadsen1 , Eric Weitz , and Alex Pico

Activity

last edited

Discuss this pathway

Check for ongoing discussions or start your own.

Cited In

Are you planning to include this pathway in your next publication? See How to Cite and add a link here to your paper once it's online.

Organisms

Homo sapiens

Communities

Annotations

Disease Ontology

autism spectrum disorder anxiety disorder attention deficit hyperactivity disorder generalized anxiety disorder

Pathway Ontology

neurotransmitter metabolic pathway tetrahydrobiopterin metabolic pathway endocannabinoid signaling pathway endocannabinoid metabolic pathway epinephrine signaling pathway folate metabolic pathway kynurenine metabolic pathway methionine cycle/metabolic pathway folate mediated one-carbon metabolic pathway

Participants

Label Type Compact URI Comment
sarcosine Metabolite chebi:57433
hydroxocobalamin Metabolite chebi:27786
THF-polyglutamate Metabolite chebi:28624
FMN Metabolite chebi:cHEBI:58210
SAMe Metabolite chebi:59789
THF Metabolite chebi:26907
glycine betaine Metabolite chebi:17750
5-MTHF Metabolite chebi:15641
AdoCbl Metabolite chebi:18408
MeCbl(III)alamin Metabolite chebi:28115
B9 Metabolite chebi:27470
SAH Metabolite chebi:16680
FLAD1 Metabolite chebi:Q8NFF5
Met Metabolite chebi:64558
acetate Metabolite chebi:58251
DHF Metabolite chebi:23743
B2 Metabolite chebi:17015
cystathionine Metabolite chebi:58161
homocysteine Metabolite chebi:58199
5, 10-MTHFPG Metabolite chebi:60976
10-formyl-THF Metabolite chebi:15637
5-10MeTHF Metabolite chebi:20502
FAD Metabolite chebi:57692
Succinyl-CoA Metabolite chebi:15380
R-cob(III)alamin Metabolite chebi:140785
cob(I)alamin Metabolite chebi:15982
Methylmalonyl-CoA Metabolite chebi:16625
FMN Metabolite chebi:cHEBI:58210 cofactor
PLP Metabolite chebi:597326
cob(II)alamin Metabolite chebi:16304 Should be cob(II)alamin according to literature
FAD Metabolite chebi:57692 cofactor
Cbl Metabolite chebi:23334
cobalamins Metabolite chebi:23334
glycine Metabolite chebi:57305
serine Metabolite wikidata:Q82980657
vitamin B6 Metabolite chebi:27306
Zn2+ Metabolite chebi:29105
PLP Metabolite chebi:597326 pyridoxal 5'-phosphate
PMP Metabolite chebi:18335 pyridoxamine 5'-phosphate
PNP Metabolite chebi:28803 pyridoxine 5′-phosphate
PNG Metabolite chebi:17382 pyridoxine-5′-β-D-glucoside
PL Metabolite chebi:17310 pyridoxal
PM Metabolite chebi:57761 pyridoxamine
PN Metabolite chebi:28803 pyridoxine, vitamin B6
Mg2+ Metabolite chebi:18420
Ca2+ Metabolite chebi:29108
PA Metabolite chebi:17405 4-pyridoxic acid
Mo-MPT Metabolite chebi:71302 Mo-molybdopterin
HCFC1 (cblX) GeneProduct uniprot:P51610
FOLH1 GeneProduct uniprot:Q04609
SLC52A2 GeneProduct uniprot:Q9HAB3
SLC52A1 GeneProduct uniprot:Q9NWF4
SLC52A3 GeneProduct uniprot:Q9NQ40
CBS Protein uniprot:P35520
SLC46A1 Protein uniprot:Q96NT5
MTRR Protein uniprot:Q9UBK8
RFK Protein uniprot:Q969G6
SLC19A1 Protein uniprot:P41440
BHMT Protein uniprot:Q93088
DHFR Protein uniprot:P00374
FOLR1 Protein uniprot:P15328
TYMS Protein uniprot:P04818
DNMT1 Protein uniprot:P26358
TCN2 Protein uniprot:P20062
MTR Protein uniprot:Q99707
MTHFR Protein uniprot:P42898
ALDH1L2 Protein uniprot:Q3SY69
AHCY Protein uniprot:P23526
MAT1A Protein uniprot:Q00266
MAT2B Protein uniprot:Q9NZL9
SHMT1 Protein uniprot:P34896
MTHFD1 Protein uniprot:P11586
FOLR2 Protein uniprot:P14207
ABCD4 Protein uniprot:O14678 cblJ
MMUT Protein uniprot:P22033 aka methylmalonyl-CoA mutase or MCM
CD320 Protein uniprot:Q9NPF0 Aka CD320 receptor
cbLAMMAA Protein uniprot:Q8IVH4 Gene: MMAA
LMBRD1 Protein uniprot:Q9NUN5 cblF
MMACHC Protein uniprot:Q9Y4U1 cbLC
MMAB Protein uniprot:60488 cblB
MMADHC Protein uniprot:Q9H3L0 'cblD protein might be responsible for branching of the cobalamin metabolism pathways to the cytosolic or mitochondrial compartments' Pubmed: 21114891
gene is called MMADHC
MMACHC Protein uniprot:Q9Y4U1 Gene is called MMAC
MMAA Protein uniprot:Q8IVH4 cbLA
TCN2 Protein uniprot:P20062 aka Transcobalamin 2
TCN1 Protein uniprot:P20061 aka haptocorrin or transcobalamin 1
Produced in saliva and stomach
CUBN Protein uniprot:O60494 aka cubilin
TCN1 Protein uniprot:P20061 aka haptocorrin or transcobalamin 1
CBLIF Protein uniprot:P27352 aka (gastric) intrinsic factor, transcobalamin III
Located in gastric parietal cells
CBLIF Protein uniprot:P27352 aka intrinsic factor
AMN Protein uniprot:Q9BXJ7 aka amnionless
GNMT Protein uniprot:Q14749
NGLY1 Protein uniprot:Q96IV0 PNG hydrolase, PNGH
ALPI Protein uniprot:P09923 Intestinal-type alkaline phosphatase
PNPO Protein uniprot:Q9NVS9
PDXK Protein uniprot:O00764
ALPL Protein uniprot:P05186
AOX1 Protein uniprot:Q06278 Aldehyde oxidase

References

  1. The proteasome and its role in the degradation of oxidized proteins. Jung T, Grune T. IUBMB Life [Internet]. 2008 Nov;60(11):743–52. Available from: http://dx.doi.org/10.1002/iub.114 DOI Scholia
  2. Disorders affecting vitamin B6 metabolism. Wilson MP, Plecko B, Mills PB, Clayton PT. J of Inher Metab Disea [Internet]. 2019 Mar 20;42(4):629–46. Available from: http://dx.doi.org/10.1002/jimd.12060 DOI Scholia
  3. Methionine synthase and methionine synthase reductase interact with MMACHC and with MMADHC. Bassila C, Ghemrawi R, Flayac J, Froese DS, Baumgartner MR, Guéant JL, et al. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease [Internet]. 2017 Jan;1863(1):103–12. Available from: http://dx.doi.org/10.1016/j.bbadis.2016.10.016 DOI Scholia
  4. Association between gene promoter methylation of the one-carbon metabolism pathway and serum folate among patients with hyperhomocysteinemia. Huang X, Zhao Q, Li D, Ren B, Yue L, Shi F, et al. Eur J Clin Nutr [Internet]. 2020 May 13;74(12):1677–84. Available from: http://dx.doi.org/10.1038/s41430-020-0657-9 DOI Scholia
  5. Toward a better understanding of folate metabolism in health and disease. Zheng Y, Cantley LC. Journal of Experimental Medicine [Internet]. 2018 Dec 26;216(2):253–66. Available from: http://dx.doi.org/10.1084/jem.20181965 DOI Scholia
  6. Three Main Causes of Homocystinuria: CBS, cblC and MTHFR Deficiency. What do they Have in Common? Hoss GRW, Poloni S, Blom HJ, Schwartz IVD. J inborn errors metab screen [Internet]. 2019;7. Available from: http://dx.doi.org/10.1590/2326-4594-jiems-2019-0007 DOI Scholia
  7. Microbial Metabolic Capacity for Intestinal Folate Production and Modulation of Host Folate Receptors. Engevik MA, Morra CN, Röth D, Engevik K, Spinler JK, Devaraj S, et al. Front Microbiol [Internet]. 2019 Oct 9;10. Available from: http://dx.doi.org/10.3389/fmicb.2019.02305 DOI Scholia
  8. Vitamin B12 (Cobalamin) and Micronutrient Fortification in Food Crops Using Nanoparticle Technology. Oh S, Cave G, Lu C. Front Plant Sci [Internet]. 2021 Aug 23;12. Available from: http://dx.doi.org/10.3389/fpls.2021.668819 DOI Scholia
  9. Tetrahydrobiopterin: Beyond Its Traditional Role as a Cofactor. Eichwald T, da Silva L de B da, Staats Pires ACS, Niero L, Schnorrenberger E, Filho CC, et al. Antioxidants [Internet]. 2023 May 3;12(5):1037. Available from: http://dx.doi.org/10.3390/antiox12051037 DOI Scholia
  10. Development of Novel Experimental Models to Study Flavoproteome Alterations in Human Neuromuscular Diseases: The Effect of Rf Therapy. Tolomeo M, Nisco A, Leone P, Barile M. IJMS [Internet]. 2020 Jul 26;21(15):5310. Available from: http://dx.doi.org/10.3390/ijms21155310 DOI Scholia
  11. B Vitamins and the Brain: Mechanisms, Dose and Efficacy—A Review. Kennedy D. Nutrients [Internet]. 2016 Jan 27;8(2):68. Available from: http://dx.doi.org/10.3390/nu8020068 DOI Scholia
  12. Riboflavin metabolism: role in mitochondrial function. Balasubramaniam S, Yaplito-Lee J. jtgg [Internet]. 2020; Available from: http://dx.doi.org/10.20517/jtgg.2020.34 DOI Scholia
  13. Biosynthesis of cobalamin (vitamin B12): a bacterial conundrum. Raux E, Schubert HL, Warren MJ. Cell Mol Life Sci. 2000 Dec;57(13–14):1880–93. PubMed Europe PMC Scholia
  14. Mechanism of vitamin B12-responsiveness in cblC methylmalonic aciduria with homocystinuria. Froese DS, Zhang J, Healy S, Gravel RA. Mol Genet Metab. 2009 Dec;98(4):338–43. PubMed Europe PMC Scholia
  15. Inborn errors of cobalamin absorption and metabolism. Watkins D, Rosenblatt DS. Am J Med Genet C Semin Med Genet. 2011 Feb 15;157C(1):33–44. PubMed Europe PMC Scholia
  16. URL: https://medlineplus.gov/genetics/gene/hcfc1/#synonyms