Pathways into methionine and folate cycles (WP5488)
Homo sapiens
Cobalamin (B12) and folate (B9) are two B vitamins that are essential for the folate cycle and methionine cycle, which are part of one-carbon metabolism. The folate cycle is located in the cytoplasm and mitochondria, and uses serine and glycine as inputs. The folate cycle is dependent on B12 to generate the active forms of vitamin B9. The methionine cycle requires methionine to produce cysteine, which is a key component of the trans-sulfuration pathway. The enzyme methionine synthase uses B12 as a cofactor to convert homocysteine to methionine.
Authors
Alexmadsen1 , Eric Weitz , and Alex PicoActivity
Discuss this pathway
Check for ongoing discussions or start your own.
Cited In
Are you planning to include this pathway in your next publication? See How to Cite and add a link here to your paper once it's online.
Organisms
Homo sapiensCommunities
Annotations
Disease Ontology
autism spectrum disorder anxiety disorder attention deficit hyperactivity disorder generalized anxiety disorderPathway Ontology
neurotransmitter metabolic pathway tetrahydrobiopterin metabolic pathway endocannabinoid signaling pathway endocannabinoid metabolic pathway epinephrine signaling pathway folate metabolic pathway kynurenine metabolic pathway methionine cycle/metabolic pathway folate mediated one-carbon metabolic pathwayLabel | Type | Compact URI | Comment |
---|---|---|---|
sarcosine | Metabolite | chebi:57433 | |
hydroxocobalamin | Metabolite | chebi:27786 | |
THF-polyglutamate | Metabolite | chebi:28624 | |
FMN | Metabolite | chebi:cHEBI:58210 | |
SAMe | Metabolite | chebi:59789 | |
THF | Metabolite | chebi:26907 | |
glycine betaine | Metabolite | chebi:17750 | |
5-MTHF | Metabolite | chebi:15641 | |
AdoCbl | Metabolite | chebi:18408 | |
MeCbl(III)alamin | Metabolite | chebi:28115 | |
B9 | Metabolite | chebi:27470 | |
SAH | Metabolite | chebi:16680 | |
FLAD1 | Metabolite | chebi:Q8NFF5 | |
Met | Metabolite | chebi:64558 | |
acetate | Metabolite | chebi:58251 | |
DHF | Metabolite | chebi:23743 | |
B2 | Metabolite | chebi:17015 | |
cystathionine | Metabolite | chebi:58161 | |
homocysteine | Metabolite | chebi:58199 | |
5, 10-MTHFPG | Metabolite | chebi:60976 | |
10-formyl-THF | Metabolite | chebi:15637 | |
5-10MeTHF | Metabolite | chebi:20502 | |
FAD | Metabolite | chebi:57692 | |
Succinyl-CoA | Metabolite | chebi:15380 | |
R-cob(III)alamin | Metabolite | chebi:140785 | |
cob(I)alamin | Metabolite | chebi:15982 | |
Methylmalonyl-CoA | Metabolite | chebi:16625 | |
FMN | Metabolite | chebi:cHEBI:58210 | cofactor |
PLP | Metabolite | chebi:597326 | |
cob(II)alamin | Metabolite | chebi:16304 | Should be cob(II)alamin according to literature |
FAD | Metabolite | chebi:57692 | cofactor |
Cbl | Metabolite | chebi:23334 | |
cobalamins | Metabolite | chebi:23334 | |
glycine | Metabolite | chebi:57305 | |
serine | Metabolite | wikidata:Q82980657 | |
vitamin B6 | Metabolite | chebi:27306 | |
Zn2+ | Metabolite | chebi:29105 | |
PLP | Metabolite | chebi:597326 | pyridoxal 5'-phosphate |
PMP | Metabolite | chebi:18335 | pyridoxamine 5'-phosphate |
PNP | Metabolite | chebi:28803 | pyridoxine 5′-phosphate |
PNG | Metabolite | chebi:17382 | pyridoxine-5′-β-D-glucoside |
PL | Metabolite | chebi:17310 | pyridoxal |
PM | Metabolite | chebi:57761 | pyridoxamine |
PN | Metabolite | chebi:28803 | pyridoxine, vitamin B6 |
Mg2+ | Metabolite | chebi:18420 | |
Ca2+ | Metabolite | chebi:29108 | |
PA | Metabolite | chebi:17405 | 4-pyridoxic acid |
Mo-MPT | Metabolite | chebi:71302 | Mo-molybdopterin |
HCFC1 (cblX) | GeneProduct | uniprot:P51610 | |
FOLH1 | GeneProduct | uniprot:Q04609 | |
SLC52A2 | GeneProduct | uniprot:Q9HAB3 | |
SLC52A1 | GeneProduct | uniprot:Q9NWF4 | |
SLC52A3 | GeneProduct | uniprot:Q9NQ40 | |
CBS | Protein | uniprot:P35520 | |
SLC46A1 | Protein | uniprot:Q96NT5 | |
MTRR | Protein | uniprot:Q9UBK8 | |
RFK | Protein | uniprot:Q969G6 | |
SLC19A1 | Protein | uniprot:P41440 | |
BHMT | Protein | uniprot:Q93088 | |
DHFR | Protein | uniprot:P00374 | |
FOLR1 | Protein | uniprot:P15328 | |
TYMS | Protein | uniprot:P04818 | |
DNMT1 | Protein | uniprot:P26358 | |
TCN2 | Protein | uniprot:P20062 | |
MTR | Protein | uniprot:Q99707 | |
MTHFR | Protein | uniprot:P42898 | |
ALDH1L2 | Protein | uniprot:Q3SY69 | |
AHCY | Protein | uniprot:P23526 | |
MAT1A | Protein | uniprot:Q00266 | |
MAT2B | Protein | uniprot:Q9NZL9 | |
SHMT1 | Protein | uniprot:P34896 | |
MTHFD1 | Protein | uniprot:P11586 | |
FOLR2 | Protein | uniprot:P14207 | |
ABCD4 | Protein | uniprot:O14678 | cblJ |
MMUT | Protein | uniprot:P22033 | aka methylmalonyl-CoA mutase or MCM |
CD320 | Protein | uniprot:Q9NPF0 | Aka CD320 receptor |
cbLAMMAA | Protein | uniprot:Q8IVH4 | Gene: MMAA |
LMBRD1 | Protein | uniprot:Q9NUN5 | cblF |
MMACHC | Protein | uniprot:Q9Y4U1 | cbLC |
MMAB | Protein | uniprot:60488 | cblB |
MMADHC | Protein | uniprot:Q9H3L0 | 'cblD protein might be responsible for branching of the cobalamin metabolism pathways to the cytosolic or mitochondrial compartments' Pubmed: 21114891gene is called MMADHC |
MMACHC | Protein | uniprot:Q9Y4U1 | Gene is called MMAC |
MMAA | Protein | uniprot:Q8IVH4 | cbLA |
TCN2 | Protein | uniprot:P20062 | aka Transcobalamin 2 |
TCN1 | Protein | uniprot:P20061 | aka haptocorrin or transcobalamin 1Produced in saliva and stomach |
CUBN | Protein | uniprot:O60494 | aka cubilin |
TCN1 | Protein | uniprot:P20061 | aka haptocorrin or transcobalamin 1 |
CBLIF | Protein | uniprot:P27352 | aka (gastric) intrinsic factor, transcobalamin IIILocated in gastric parietal cells |
CBLIF | Protein | uniprot:P27352 | aka intrinsic factor |
AMN | Protein | uniprot:Q9BXJ7 | aka amnionless |
GNMT | Protein | uniprot:Q14749 | |
NGLY1 | Protein | uniprot:Q96IV0 | PNG hydrolase, PNGH |
ALPI | Protein | uniprot:P09923 | Intestinal-type alkaline phosphatase |
PNPO | Protein | uniprot:Q9NVS9 | |
PDXK | Protein | uniprot:O00764 | |
ALPL | Protein | uniprot:P05186 | |
AOX1 | Protein | uniprot:Q06278 | Aldehyde oxidase |
References
- The proteasome and its role in the degradation of oxidized proteins. Jung T, Grune T. IUBMB Life [Internet]. 2008 Nov;60(11):743–52. Available from: http://dx.doi.org/10.1002/iub.114 DOI Scholia
- Disorders affecting vitamin B6 metabolism. Wilson MP, Plecko B, Mills PB, Clayton PT. J of Inher Metab Disea [Internet]. 2019 Mar 20;42(4):629–46. Available from: http://dx.doi.org/10.1002/jimd.12060 DOI Scholia
- Methionine synthase and methionine synthase reductase interact with MMACHC and with MMADHC. Bassila C, Ghemrawi R, Flayac J, Froese DS, Baumgartner MR, Guéant JL, et al. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease [Internet]. 2017 Jan;1863(1):103–12. Available from: http://dx.doi.org/10.1016/j.bbadis.2016.10.016 DOI Scholia
- Association between gene promoter methylation of the one-carbon metabolism pathway and serum folate among patients with hyperhomocysteinemia. Huang X, Zhao Q, Li D, Ren B, Yue L, Shi F, et al. Eur J Clin Nutr [Internet]. 2020 May 13;74(12):1677–84. Available from: http://dx.doi.org/10.1038/s41430-020-0657-9 DOI Scholia
- Toward a better understanding of folate metabolism in health and disease. Zheng Y, Cantley LC. Journal of Experimental Medicine [Internet]. 2018 Dec 26;216(2):253–66. Available from: http://dx.doi.org/10.1084/jem.20181965 DOI Scholia
- Three Main Causes of Homocystinuria: CBS, cblC and MTHFR Deficiency. What do they Have in Common? Hoss GRW, Poloni S, Blom HJ, Schwartz IVD. J inborn errors metab screen [Internet]. 2019;7. Available from: http://dx.doi.org/10.1590/2326-4594-jiems-2019-0007 DOI Scholia
- Microbial Metabolic Capacity for Intestinal Folate Production and Modulation of Host Folate Receptors. Engevik MA, Morra CN, Röth D, Engevik K, Spinler JK, Devaraj S, et al. Front Microbiol [Internet]. 2019 Oct 9;10. Available from: http://dx.doi.org/10.3389/fmicb.2019.02305 DOI Scholia
- Vitamin B12 (Cobalamin) and Micronutrient Fortification in Food Crops Using Nanoparticle Technology. Oh S, Cave G, Lu C. Front Plant Sci [Internet]. 2021 Aug 23;12. Available from: http://dx.doi.org/10.3389/fpls.2021.668819 DOI Scholia
- Tetrahydrobiopterin: Beyond Its Traditional Role as a Cofactor. Eichwald T, da Silva L de B da, Staats Pires ACS, Niero L, Schnorrenberger E, Filho CC, et al. Antioxidants [Internet]. 2023 May 3;12(5):1037. Available from: http://dx.doi.org/10.3390/antiox12051037 DOI Scholia
- Development of Novel Experimental Models to Study Flavoproteome Alterations in Human Neuromuscular Diseases: The Effect of Rf Therapy. Tolomeo M, Nisco A, Leone P, Barile M. IJMS [Internet]. 2020 Jul 26;21(15):5310. Available from: http://dx.doi.org/10.3390/ijms21155310 DOI Scholia
- B Vitamins and the Brain: Mechanisms, Dose and Efficacy—A Review. Kennedy D. Nutrients [Internet]. 2016 Jan 27;8(2):68. Available from: http://dx.doi.org/10.3390/nu8020068 DOI Scholia
- Riboflavin metabolism: role in mitochondrial function. Balasubramaniam S, Yaplito-Lee J. jtgg [Internet]. 2020; Available from: http://dx.doi.org/10.20517/jtgg.2020.34 DOI Scholia
- Biosynthesis of cobalamin (vitamin B12): a bacterial conundrum. Raux E, Schubert HL, Warren MJ. Cell Mol Life Sci. 2000 Dec;57(13–14):1880–93. PubMed Europe PMC Scholia
- Mechanism of vitamin B12-responsiveness in cblC methylmalonic aciduria with homocystinuria. Froese DS, Zhang J, Healy S, Gravel RA. Mol Genet Metab. 2009 Dec;98(4):338–43. PubMed Europe PMC Scholia
- Inborn errors of cobalamin absorption and metabolism. Watkins D, Rosenblatt DS. Am J Med Genet C Semin Med Genet. 2011 Feb 15;157C(1):33–44. PubMed Europe PMC Scholia
- URL: https://medlineplus.gov/genetics/gene/hcfc1/#synonyms