ROS in COVID-19 endothelial dysfunction (WP5258)

Homo sapiens

Proposed mechanism for COVID-19 induced endothelial dysfunction via ROS, as described by Ma et Al. (2022). TNF-α stimulation of NADPH oxidase leads to accumulation of reactive oxygen species (ROS). Increased levels of IFN reduces the expression of functional ACE2, which leads to increased ROS via imbalanced RAS signaling. Excessive ROS disturbs vascular tone and increases endothelial permeability. Description modified from [https://europepmc.org/article/MED/34838588 Ma et. al.].

Authors

EAD2022 , Egon Willighagen , Eric Weitz , Kristina Hanspers , Martina Summer-Kutmon , and Aishwarya Iyer

Activity

last edited

Discuss this pathway

Check for ongoing discussions or start your own.

Cited In

Are you planning to include this pathway in your next publication? See How to Cite and add a link here to your paper once it's online.

Organisms

Homo sapiens

Communities

Annotations

Pathway Ontology

disease pathway infectious disease pathway

Cell Type Ontology

endothelial cell

Disease Ontology

COVID-19

Participants

Label Type Compact URI Comment
Nitric oxide Metabolite chebi:16480
Angiotensin II Metabolite hmdb:HMDB01035
Reactive oxygen species Metabolite chebi:26523
IFNAR1 GeneProduct ensembl:ENSG00000142166
TNFRSF1A GeneProduct ensembl:ENSG00000067182
ICAM1 GeneProduct ensembl:ENSG00000090339
NOX1 GeneProduct hgnc.symbol:NOX1
TNF GeneProduct ensembl:ENSG00000232810
ACE2 GeneProduct ensembl:ENSG00000130234
NFKB1 GeneProduct ensembl:ENSG00000109320
IFNA1 GeneProduct ensembl:ENSG00000197919
ACE2 (truncated) GeneProduct ensembl:ENSG00000130234

References

  1. PubMed Central: PMC7977775
  2. Oxidant stress regulation of IL-8 and ICAM-1 gene expression: differential activation and binding of the transcription factors AP-1 and NF-kappaB (Review). Roebuck KA. Int J Mol Med. 1999 Sep;4(3):223–30. PubMed Europe PMC Scholia
  3. Prevention of angiotensin II-mediated renal oxidative stress, inflammation, and fibrosis by angiotensin-converting enzyme 2. Zhong J, Guo D, Chen CB, Wang W, Schuster M, Loibner H, et al. Hypertension. 2011 Feb;57(2):314–22. PubMed Europe PMC Scholia
  4. NADPH oxidases, reactive oxygen species, and the kidney: friend and foe. Sedeek M, Nasrallah R, Touyz RM, Hébert RL. J Am Soc Nephrol. 2013 Oct;24(10):1512–8. PubMed Europe PMC Scholia
  5. NADPH Oxidase/ROS-Dependent VCAM-1 Induction on TNF-α-Challenged Human Cardiac Fibroblasts Enhances Monocyte Adhesion. Lin CC, Yang CC, Wang CY, Tseng HC, Pan CS, Hsiao LD, et al. Front Pharmacol. 2016 Jan 28;6:310. PubMed Europe PMC Scholia
  6. Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases. Incalza MA, D’Oria R, Natalicchio A, Perrini S, Laviola L, Giorgino F. Vascul Pharmacol. 2018 Jan;100:1–19. PubMed Europe PMC Scholia
  7. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Lancet. 2020 Feb 15;395(10223):497–506. PubMed Europe PMC Scholia
  8. The pivotal link between ACE2 deficiency and SARS-CoV-2 infection. Verdecchia P, Cavallini C, Spanevello A, Angeli F. Eur J Intern Med. 2020 Jun;76:14–20. PubMed Europe PMC Scholia
  9. Type I and Type III Interferons - Induction, Signaling, Evasion, and Application to Combat COVID-19. Park A, Iwasaki A. Cell Host Microbe. 2020 Jun 10;27(6):870–8. PubMed Europe PMC Scholia
  10. Tissue-specific and interferon-inducible expression of nonfunctional ACE2 through endogenous retroelement co-option. Ng KW, Attig J, Bolland W, Young GR, Major J, Wrobel AG, et al. Nat Genet. 2020 Dec;52(12):1294–302. PubMed Europe PMC Scholia
  11. Angiotensin II Decreases Endothelial Nitric Oxide Synthase Phosphorylation via AT1R Nox/ROS/PP2A Pathway. Ding J, Yu M, Jiang J, Luo Y, Zhang Q, Wang S, et al. Front Physiol. 2020 Sep 30;11:566410. PubMed Europe PMC Scholia
  12. Endothelial contribution to COVID-19: an update on mechanisms and therapeutic implications. Ma Z, Yang KY, Huang Y, Lui KO. J Mol Cell Cardiol. 2022 Mar;164:69–82. PubMed Europe PMC Scholia