Familial hyperlipidemia type 2 (WP5109)

Homo sapiens

Familial hyperlipidemias are classified according to the Fredrickson classification. Type II familial hyperlipidemia is divided into 2 subtypes, IIa and IIb. IIa is linked with mutations in the LDL receptor (LDLR) or genes that regulate the LDL uptake. Therefore, we see an increase of LDL with type IIa familial hyperlipidemia. IIa can be subdived into 4 different types. FHCL1 is caused by direct mutations of the LDLR. This FCHL1 has different phenotypes linked to it which are cause by mutations in APOA2, EPHX2 and GHR. FCHL2 is caused by mutations in APOB, which acts as a ligand for the LDLR. FHCL3 is caused by mutations in PCSK9 which binds to LDLR to inhibit LDL uptake. Lastly, FHCL4 is linked with mutations in LDLRAP1, which stimulates receptor binding. Typ IIB familial hyperlipidemia is known as familial combined hyperlipidemia. This type has shown an increase of both LDL and VLDL. Type IIB can be divided into 3 subtypes. FCHL1 is caused by mutations in USF1 which plays a role in cellular transcription. However, it is unclear how exactly this is linked to the lipid metabolism. HYPLIP2 is caused by mutations in APOB, which is linked to the reduced LDL. APOB is also a primmary apolipoprotein for VLDL. Lastly, FCHL3 is linked to LPL mutations, which is mostly linnked to hydrolizing the VLDL into IDL.

Authors

Ulas Babayigit , Friederike Ehrhart , Egon Willighagen , and Eric Weitz

Activity

last edited

Discuss this pathway

Check for ongoing discussions or start your own.

Cited In

Are you planning to include this pathway in your next publication? See How to Cite and add a link here to your paper once it's online.

Organisms

Homo sapiens

Communities

Rare Diseases

Annotations

Pathway Ontology

disease pathway

Cell Type Ontology

hepatocyte

Disease Ontology

familial combined hyperlipidemia familial hyperlipidemia familial hypercholesterolemia

Participants

Label Type Compact URI Comment
DHET Metabolite chebi:64005
EET Metabolite chebi:64007
VLDL Metabolite chebi:39027
Cholesterol Metabolite chebi:16113
HDL Metabolite chebi:47775
LDL Metabolite chebi:47774
Lipoprotein Metabolite chebi:6495
IDL Metabolite chebi:132933
Triglyceride Metabolite chebi:17855
Phospholipid Metabolite chebi:16247
USF1 GeneProduct ensembl:ENSG00000158773
EPHX2 GeneProduct ensembl:ENSG00000120915
GHR GeneProduct ensembl:ENSG00000112964
PCSK9 GeneProduct ensembl:ENSG00000169174
LDLRAP1 GeneProduct ensembl:ENSG00000157978
APOB GeneProduct ensembl:ENSG00000084674
APOA2 GeneProduct ensembl:ENSG00000158874
APOA4 GeneProduct ensembl:ENSG00000110244
LIPC GeneProduct ensembl:ENSG00000166035
APOA1 GeneProduct ensembl:ENSG00000118137
LCAT GeneProduct ensembl:ENSG00000213398
LDLR GeneProduct ensembl:ENSG00000130164
PLTP GeneProduct ensembl:ENSG00000100979
LPL GeneProduct ensembl:ENSG00000175445
GPIHBP1 GeneProduct ensembl:ENSG00000277494
CETP GeneProduct ensembl:ENSG00000087237

References

  1. Linkage of familial combined hyperlipidaemia to chromosome 1q21-q23. Pajukanta P, Nuotio I, Terwilliger JD, Porkka KV, Ylitalo K, Pihlajamäki J, et al. Nat Genet. 1998 Apr;18(4):369–73. PubMed Europe PMC Scholia
  2. Interaction between the LDL-receptor gene bearing a novel mutation and a variant in the apolipoprotein A-II promoter: molecular study in a 1135-member familial hypercholesterolemia kindred. Takada D, Emi M, Ezura Y, Nobe Y, Kawamura K, Iino Y, et al. J Hum Genet. 2002;47(12):656–64. PubMed Europe PMC Scholia
  3. Growth hormone receptor variant (L526I) modifies plasma HDL cholesterol phenotype in familial hypercholesterolemia: intra-familial association study in an eight-generation hyperlipidemic kindred. Takada D, Ezura Y, Ono S, Iino Y, Katayama Y, Xin Y, et al. Am J Med Genet A. 2003 Aug 30;121A(2):136–40. PubMed Europe PMC Scholia
  4. Soluble epoxide hydrolase variant (Glu287Arg) modifies plasma total cholesterol and triglyceride phenotype in familial hypercholesterolemia: intrafamilial association study in an eight-generation hyperlipidemic kindred. Sato K, Emi M, Ezura Y, Fujita Y, Takada D, Ishigami T, et al. J Hum Genet. 2004;49(1):29–34. PubMed Europe PMC Scholia
  5. USF1/2 transcription factor DNA-binding activity is induced during rat Sertoli cell differentiation. Wood MA, Walker WH. Biol Reprod. 2009 Jan;80(1):24–33. PubMed Europe PMC Scholia
  6. Low-density lipoprotein receptor (LDLR) family orchestrates cholesterol homeostasis. Go GW, Mani A. Yale J Biol Med. 2012 Mar;85(1):19–28. PubMed Europe PMC Scholia
  7. Cholesteryl ester transfer protein inhibitors for dyslipidemia: focus on dalcetrapib. Goldberg AS, Hegele RA. Drug Des Devel Ther. 2012;6:251–9. PubMed Europe PMC Scholia
  8. Familial Hypercholesterolemia. Ison HE, Clarke SL, Knowles JW. In: Adam MP, Mirzaa GM, Pagon RA, Wallace SE, Bean LJ, Gripp KW, et al., editors. GeneReviews®. Seattle (WA): University of Washington, Seattle; 2014. PubMed Europe PMC Scholia
  9. Association of CETP and LIPC Gene Polymorphisms with HDL and LDL Sub-fraction Levels in a Group of Indian Subjects: A Cross-Sectional Study. Todur SP, Ashavaid TF. Indian J Clin Biochem. 2013 Apr;28(2):116–23. PubMed Europe PMC Scholia
  10. PCSK9 and LDLR degradation: regulatory mechanisms in circulation and in cells. Lagace TA. Curr Opin Lipidol. 2014 Oct;25(5):387–93. PubMed Europe PMC Scholia
  11. Introduction to Lipids and Lipoproteins. Feingold KR. In: Feingold KR, Anawalt B, Blackman MR, Boyce A, Chrousos G, Corpas E, et al., editors. Endotext. South Dartmouth (MA): MDText.com, Inc.; 2021. PubMed Europe PMC Scholia
  12. Metabolism and Modification of Apolipoprotein B-Containing Lipoproteins Involved in Dyslipidemia and Atherosclerosis. Morita S ya. Biol Pharm Bull. 2016;39(1):1–24. PubMed Europe PMC Scholia
  13. Genetics and Dyslipidemia. Patni N, Ahmad Z, Wilson DP. In: Feingold KR, Anawalt B, Blackman MR, Boyce A, Chrousos G, Corpas E, et al., editors. Endotext. South Dartmouth (MA): MDText.com, Inc.; 2020. PubMed Europe PMC Scholia
  14. High-density lipoprotein metabolism and reverse cholesterol transport: strategies for raising HDL cholesterol. Tosheska Trajkovska K, Topuzovska S. Anatol J Cardiol. 2017 Aug;18(2):149–54. PubMed Europe PMC Scholia
  15. Apolipoprotein C-II: New findings related to genetics, biochemistry, and role in triglyceride metabolism. Wolska A, Dunbar RL, Freeman LA, Ueda M, Amar MJ, Sviridov DO, et al. Atherosclerosis. 2017 Dec;267:49–60. PubMed Europe PMC Scholia
  16. Epoxide hydrolase 1 (EPHX1) hydrolyzes epoxyeicosanoids and impairs cardiac recovery after ischemia. Edin ML, Hamedani BG, Gruzdev A, Graves JP, Lih FB, Arbes SJ 3rd, et al. J Biol Chem. 2018 Mar 2;293(9):3281–92. PubMed Europe PMC Scholia
  17. N-terminal mutation of apoA-I and interaction with ABCA1 reveal mechanisms of nascent HDL biogenesis. Liu M, Mei X, Herscovitz H, Atkinson D. J Lipid Res. 2019 Jan;60(1):44–57. PubMed Europe PMC Scholia
  18. FAMILIAL COMBINED HYPERLIPIDEMIA: CURRENT KNOWLEDGE, PERSPECTIVES, AND CONTROVERSIES. Bello-Chavolla OY, Kuri-García A, Ríos-Ríos M, Vargas-Vázquez A, Cortés-Arroyo JE, Tapia-González G, et al. Rev Invest Clin. 2018;70(5):224–36. PubMed Europe PMC Scholia
  19. Genetic and secondary causes of severe HDL deficiency and cardiovascular disease. Geller AS, Polisecki EY, Diffenderfer MR, Asztalos BF, Karathanasis SK, Hegele RA, et al. J Lipid Res. 2018 Dec;59(12):2421–35. PubMed Europe PMC Scholia
  20. Sexually Dimorphic Regulation of EET Synthesis and Metabolism: Roles of Estrogen. Huang A, Sun D. Front Pharmacol. 2018 Oct 29;9:1222. PubMed Europe PMC Scholia
  21. Identification of ApoA4 as a sphingosine 1-phosphate chaperone in ApoM- and albumin-deficient mice. Obinata H, Kuo A, Wada Y, Swendeman S, Liu CH, Blaho VA, et al. J Lipid Res. 2019 Nov;60(11):1912–21. PubMed Europe PMC Scholia
  22. Interleukin 10 promotes macrophage uptake of HDL and LDL by stimulating fluid-phase endocytosis. Lucero D, Islam P, Freeman LA, Jin X, Pryor M, Tang J, et al. Biochim Biophys Acta Mol Cell Biol Lipids. 2020 Feb;1865(2):158537. PubMed Europe PMC Scholia
  23. Association between the APOA2 rs3813627 Single Nucleotide Polymorphism and HDL and APOA1 Levels Through BMI. Boughanem H, Bandera-Merchán B, Hernández-Alonso P, Moreno-Morales N, Tinahones FJ, Lozano J, et al. Biomedicines. 2020 Feb 27;8(3):44. PubMed Europe PMC Scholia