GDNF/RET signaling axis (WP4830)

Homo sapiens

GDNF-RET signalling is at the core of the signalling network in kidney development. These signalling interactions between the metanephric mesenchyme and the nephric duct are crucial to ensure the induction of the ureter from the nephric duct. Pathway converted from original mouse pathway WP4820.

Authors

Friederike Ehrhart , Eric Weitz , Lars Willighagen , and Aishwarya Iyer

Activity

last edited

Discuss this pathway

Check for ongoing discussions or start your own.

Cited In

Are you planning to include this pathway in your next publication? See How to Cite and add a link here to your paper once it's online.

Organisms

Homo sapiens

Communities

Rare Diseases

Annotations

Disease Ontology

kidney disease CAKUT

Pathway Ontology

regulatory pathway

Cell Type Ontology

kidney cell

Participants

Label Type Compact URI Comment
ALDH1A2 GeneProduct ensembl:ENSG00000128918
ROBO1 GeneProduct ensembl:ENSG00000169855
HNF1B GeneProduct ensembl:ENSG00000275410
HOXC11 GeneProduct ensembl:ENSG00000123388
SIX2 GeneProduct ensembl:ENSG00000170577
WT1 GeneProduct ensembl:ENSG00000184937
HOXA11 GeneProduct ensembl:ENSG00000005073
SPRY1 GeneProduct ensembl:ENSG00000164056 Homology Mapping from Mus musculus to Homo sapiens: Original ID = En:ENSMUSG00000037211
FOXC1 GeneProduct ensembl:ENSG00000054598 Homology Mapping from Mus musculus to Homo sapiens: Original ID = En:ENSMUSG00000050295
SOX17 GeneProduct ensembl:ENSG00000164736 Homology Mapping from Mus musculus to Homo sapiens: Original ID = En:ENSMUSG00000025902
EYA1 GeneProduct ensembl:ENSG00000104313 Homology Mapping from Mus musculus to Homo sapiens: Original ID = En:ENSMUSG00000025932
SOX11 GeneProduct ensembl:ENSG00000176887 Homology Mapping from Mus musculus to Homo sapiens: Original ID = En:ENSMUSG00000063632
PAX2 GeneProduct ensembl:ENSG00000075891 Homology Mapping from Mus musculus to Homo sapiens: Original ID = En:ENSMUSG00000004231
SALL1 GeneProduct ensembl:ENSG00000103449 Homology Mapping from Mus musculus to Homo sapiens: Original ID = En:ENSMUSG00000031665
AGTR2 GeneProduct ensembl:ENSG00000180772 Homology Mapping from Mus musculus to Homo sapiens: Original ID = En:ENSMUSG00000068122
FOXC2 GeneProduct ensembl:ENSG00000176692 Homology Mapping from Mus musculus to Homo sapiens: Original ID = En:ENSMUSG00000046714
GDNF GeneProduct ensembl:ENSG00000168621 Homology Mapping from Mus musculus to Homo sapiens: Original ID = En:ENSMUSG00000022144
GATA3 GeneProduct ensembl:ENSG00000107485 Homology Mapping from Mus musculus to Homo sapiens: Original ID = En:ENSMUSG00000015619
FAT4 GeneProduct ensembl:ENSG00000196159 Homology Mapping from Mus musculus to Homo sapiens: Original ID = En:ENSMUSG00000046743
ROBO2 GeneProduct ensembl:ENSG00000185008 Homology Mapping from Mus musculus to Homo sapiens: Original ID = En:ENSMUSG00000052516
BMP4 GeneProduct ensembl:ENSG00000125378 Homology Mapping from Mus musculus to Homo sapiens: Original ID = En:ENSMUSG00000021835
LHX1 GeneProduct ensembl:ENSG00000273706 Homology Mapping from Mus musculus to Homo sapiens: Original ID = En:ENSMUSG00000018698
SLIT2 GeneProduct ensembl:ENSG00000145147 Homology Mapping from Mus musculus to Homo sapiens: Original ID = En:ENSMUSG00000031558
GREM1 GeneProduct ensembl:ENSG00000166923 Homology Mapping from Mus musculus to Homo sapiens: Original ID = En:ENSMUSG00000074934
HOXD11 GeneProduct ensembl:ENSG00000128713
RET Protein ensembl:ENSG00000165731 Homology Mapping from Mus musculus to Homo sapiens: Original ID = S:P35546
GFRA1 Protein ensembl:ENSG00000151892 Homology Mapping from Mus musculus to Homo sapiens: Original ID = S:P97785
GLI3 Protein ensembl:ENSG00000106571 Homology Mapping from Mus musculus to Homo sapiens: Original ID = S:Q61602
IFT27 Protein ensembl:ENSG00000100360 Homology Mapping from Mus musculus to Homo sapiens: Original ID = S:Q9D0P8
HSPB11 Protein ensembl:ENSG00000081870 Homology Mapping from Mus musculus to Homo sapiens: Original ID = S:Q9D6H2
CTNNB1 Protein ensembl:ENSG00000168036 Homology Mapping from Mus musculus to Homo sapiens: Original ID = S:Q02248

References

  1. Clustering of mutations responsible for branchio-oto-renal (BOR) syndrome in the eyes absent homologous region (eyaHR) of EYA1. Abdelhak S, Kalatzis V, Heilig R, Compain S, Samson D, Vincent C, et al. Hum Mol Genet. 1997 Dec;6(13):2247–55. PubMed Europe PMC Scholia
  2. Mutations in the SALL1 putative transcription factor gene cause Townes-Brocks syndrome. Kohlhase J, Wischermann A, Reichenbach H, Froster U, Engel W. Nat Genet. 1998 Jan;18(1):81–3. PubMed Europe PMC Scholia
  3. Stromal cells mediate retinoid-dependent functions essential for renal development. Mendelsohn C, Batourina E, Fung S, Gilbert T, Dodd J. Development. 1999 Mar;126(6):1139–48. PubMed Europe PMC Scholia
  4. SIX1 mutations cause branchio-oto-renal syndrome by disruption of EYA1-SIX1-DNA complexes. Ruf RG, Xu PX, Silvius D, Otto EA, Beekmann F, Muerb UT, et al. Proc Natl Acad Sci U S A. 2004 May 25;101(21):8090–5. PubMed Europe PMC Scholia
  5. Prevalence of mutations in renal developmental genes in children with renal hypodysplasia: results of the ESCAPE study. Weber S, Moriniere V, Knüppel T, Charbit M, Dusek J, Ghiggeri GM, et al. J Am Soc Nephrol. 2006 Oct;17(10):2864–70. PubMed Europe PMC Scholia
  6. A Hox-Eya-Pax complex regulates early kidney developmental gene expression. Gong KQ, Yallowitz AR, Sun H, Dressler GR, Wellik DM. Mol Cell Biol. 2007 Nov;27(21):7661–8. PubMed Europe PMC Scholia
  7. Gata3 acts downstream of beta-catenin signaling to prevent ectopic metanephric kidney induction. Grote D, Boualia SK, Souabni A, Merkel C, Chi X, Costantini F, et al. PLoS Genet. 2008 Dec;4(12):e1000316. PubMed Europe PMC Scholia
  8. Mutations in SOX17 are associated with congenital anomalies of the kidney and the urinary tract. Gimelli S, Caridi G, Beri S, McCracken K, Bocciardi R, Zordan P, et al. Hum Mutat. 2010 Dec;31(12):1352–9. PubMed Europe PMC Scholia
  9. Targeted gene sequencing and whole-exome sequencing in autopsied fetuses with prenatally diagnosed kidney anomalies. Rasmussen M, Sunde L, Nielsen ML, Ramsing M, Petersen A, Hjortshøj TD, et al. Clin Genet. 2018 Apr;93(4):860–9. PubMed Europe PMC Scholia
  10. β-Catenin in stromal progenitors controls medullary stromal development. Boivin FJ, Bridgewater D. Am J Physiol Renal Physiol. 2018 Jun 1;314(6):F1177–87. PubMed Europe PMC Scholia
  11. Duplex kidney formation: developmental mechanisms and genetic predisposition. Kozlov VM, Schedl A. F1000Res. 2020 Jan 6;9:F1000 Faculty Rev-2. PubMed Europe PMC Scholia
  12. Expansion of the renal capsular stroma, ureteric bud branching defects and cryptorchidism in mice with Wilms tumor 1 gene deletion in the stromal compartment of the developing kidney. Weiss AC, Rivera-Reyes R, Englert C, Kispert A. J Pathol. 2020 Nov;252(3):290–303. PubMed Europe PMC Scholia