Senescence-associated secretory phenotype (SASP) (WP3391)

Homo sapiens

The culture medium of senescent cells in enriched in secreted proteins when compared with the culture medium of quiescent i.e. presenescent cells and these secreted proteins constitute the so-called senescence-associated secretory phenotype (SASP), also known as the senescence messaging secretome (SMS). SASP components include inflammatory and immune-modulatory cytokines (e.g. IL6 and IL8), growth factors (e.g. IGFBPs), shed cell surface molecules (e.g. TNF receptors) and survival factors. While the SASP exhibits a wide ranging profile, it is not significantly affected by the type of senescence trigger (oncogenic signalling, oxidative stress or DNA damage) or the cell type (epithelial vs. mesenchymal) (Coppe et al. 2008). However, as both oxidative stress and oncogenic signaling induce DNA damage, the persistent DNA damage may be a deciding SASP initiator (Rodier et al. 2009). SASP components function in an autocrine manner, reinforcing the senescent phenotype (Kuilman et al. 2008, Acosta et al. 2008), and in the paracrine manner, where they may promote epithelial-to-mesenchymal transition (EMT) and malignancy in the nearby premalignant or malignant cells (Coppe et al. 2008). Interleukin-1-alpha (IL1A), a minor SASP component whose transcription is stimulated by the AP-1 (FOS:JUN) complex (Bailly et al. 1996), can cause paracrine senescence through IL1 and inflammasome signaling (Acosta et al. 2013).

Here, transcriptional regulatory processes that mediate the SASP are annotated. DNA damage triggers ATM-mediated activation of TP53, resulting in the increased level of CDKN1A (p21). CDKN1A-mediated inhibition of CDK2 prevents phosphorylation and inactivation of the Cdh1:APC/C complex, allowing it to ubiquitinate and target for degradation EHMT1 and EHMT2 histone methyltransferases. As EHMT1 and EHMT2 methylate and silence the promoters of IL6 and IL8 genes, degradation of these methyltransferases relieves the inhibition of IL6 and IL8 transcription (Takahashi et al. 2012). In addition, oncogenic RAS signaling activates the CEBPB (C/EBP-beta) transcription factor (Nakajima et al. 1993, Lee et al. 2010), which binds promoters of IL6 and IL8 genes and stimulates their transcription (Kuilman et al. 2008, Lee et al. 2010). CEBPB also stimulates the transcription of CDKN2B (p15-INK4B), reinforcing the cell cycle arrest (Kuilman et al. 2008). CEBPB transcription factor has three isoforms, due to three alternative translation start sites. The CEBPB-1 isoform (C/EBP-beta-1) seems to be exclusively involved in growth arrest and senescence, while the CEBPB-2 (C/EBP-beta-2) isoform may promote cellular proliferation (Atwood and Sealy 2010 and 2011). IL6 signaling stimulates the transcription of CEBPB (Niehof et al. 2001), creating a positive feedback loop (Kuilman et al. 2009, Lee et al. 2010). NF-kappa-B transcription factor is also activated in senescence (Chien et al. 2011) through IL1 signaling (Jimi et al. 1996, Hartupee et al. 2008, Orjalo et al. 2009). NF-kappa-B binds IL6 and IL8 promoters and cooperates with CEBPB transcription factor in the induction of IL6 and IL8 transcription (Matsusaka et al. 1993, Acosta et al. 2008). Besides IL6 and IL8, their receptors are also upregulated in senescence (Kuilman et al. 2008, Acosta et al. 2008) and IL6 and IL8 may be master regulators of the SASP.

IGFBP7 is also an SASP component that is upregulated in response to oncogenic RAS-RAF-MAPK signaling and oxidative stress, as its transcription is directly stimulated by the AP-1 (JUN:FOS) transcription factor. IGFBP7 negatively regulates RAS-RAF (BRAF)-MAPK signaling and is important for the establishment of senescence in melanocytes (Wajapeyee et al. 2008).

Please refer to Young and Narita 2009 for a recent review. View original pathway at [http://www.reactome.org/PathwayBrowser/#DIAGRAM=2559582 Reactome].

Authors

ReactomeTeam , Vinny Lynch , and Eric Weitz

Activity

last edited

Discuss this pathway

Check for ongoing discussions or start your own.

Cited In

Are you planning to include this pathway in your next publication? See How to Cite and add a link here to your paper once it's online.

Organisms

Homo sapiens

Communities

Annotations

Participants

Label Type Compact URI Comment
ATP Metabolite chebi:30616
ADP Metabolite chebi:456216
AdoMet Metabolite chebi:15414
AdoHcy Metabolite chebi:16680
IL6 gene GeneProduct ensembl:ENSG00000136244
CEBPB gene GeneProduct ensembl:ENSG00000172216
IL1A gene GeneProduct ensembl:ENSG00000115008
IL8 gene GeneProduct ensembl:ENSG00000169429
CDKN2B gene GeneProduct ensembl:ENSG00000147883
IGFBP7 gene GeneProduct ensembl:ENSG00000163453
ANAPC15 Protein uniprot:P60006
IL6 gene Protein ensembl:ENSG00000136244
RPS27A(1-76) Protein uniprot:P62979
ANAPC16 Protein uniprot:Q96DE5
IL8 gene Protein ensembl:ENSG00000169429
UBE2S Protein uniprot:Q16763
p-T235, S321-CEBPB Protein uniprot:P17676
HIST1H2AB Protein uniprot:P04908
UBC(381-456) Protein uniprot:P0CG48
HIST2H2BE Protein uniprot:Q16778
UBE2C Protein uniprot:O00762
CCNA1 Protein uniprot:P78396
H2AFJ Protein uniprot:Q9BTM1
HIST1H2BD Protein uniprot:P58876
UBE2E1 Protein uniprot:P51965
HIST1H2BK Protein uniprot:O60814
H2AFV Protein uniprot:Q71UI9
ANAPC10 Protein uniprot:Q9UM13
UBC(305-380) Protein uniprot:P0CG48
HIST1H2AC Protein uniprot:Q93077
HIST1H2BB Protein uniprot:P33778
UBE2D1 Protein uniprot:P51668
ANAPC4 Protein uniprot:Q9UJX5
ANAPC1 Protein uniprot:Q9H1A4
p-T235, S321-CEBPB Protein uniprot:P17676
H3F3A Protein uniprot:P84243
CDC16 Protein uniprot:Q13042
p-S63,S73-JUN Protein uniprot:P05412
ANAPC11 Protein uniprot:Q9NYG5
CDC23 Protein uniprot:Q9UJX2
H2BFS Protein uniprot:P57053
p-T202,Y204-MAPK3 Protein uniprot:P27361
CCNA2 Protein uniprot:P20248
UBA52(1-76) Protein uniprot:P62987
HIST1H2AD Protein uniprot:P20671
CDKN2C Protein uniprot:P42773
HIST1H2BL Protein uniprot:Q99880
HIST1H2BA Protein uniprot:Q96A08
RPS6KA3 Protein uniprot:P51812
Me2K-10-HIST2H3A Protein uniprot:Q71DI3
p-T325,T331,S362,S374-FOS Protein uniprot:P01100
Myr82K-Myr83K-IL1A Protein uniprot:P01583
ANAPC5 Protein uniprot:Q9UJX4
CDC26 Protein uniprot:Q8NHZ8
CDKN2B Protein uniprot:P42772
HIST2H2AC Protein uniprot:Q16777
HIST1H2BM Protein uniprot:Q99879
RPS6KA2 Protein uniprot:Q15349
H2AFX Protein uniprot:P16104
ANAPC2 Protein uniprot:Q9UJX6
CEBPB Protein uniprot:P17676
IL8 Protein uniprot:P10145
UBB(77-152) Protein uniprot:P0CG47
UBC(609-684) Protein uniprot:P0CG48
HIST2H3A Protein uniprot:Q71DI3
HIST2H2AA3 Protein uniprot:Q6FI13
H2AFZ Protein uniprot:P0C0S5
HIST1H2AJ Protein uniprot:Q99878
UBC(77-152) Protein uniprot:P0CG48
CDC27 Protein uniprot:P30260
p-T185,Y187-MAPK1 Protein uniprot:P28482
CDKN1B Protein uniprot:P46527
CDK6 Protein uniprot:Q00534
IL1A gene Protein ensembl:ENSG00000115008
EHMT2 Protein uniprot:Q96KQ7
HIST1H3A Protein uniprot:P68431
ANAPC7 Protein uniprot:Q9UJX3
HIST1H2BC Protein uniprot:P62807
RELA Protein uniprot:Q04206
HIST1H2BJ Protein uniprot:P06899
UBC(1-76) Protein uniprot:P0CG48
p16INK4A Protein uniprot:P42771
CDKN2B Protein uniprot:P42772
FZR1 Protein uniprot:Q9UM11
CDKN2D Protein uniprot:P55273
HIST1H2BO Protein uniprot:P23527
HIST1H2BH Protein uniprot:Q93079
UBB(1-76) Protein uniprot:P0CG47
HIST1H2BN Protein uniprot:Q99877
H2AFB1 Protein uniprot:P0C5Y9
Me2K10-HIST1H3A Protein uniprot:P68431
CDK4 Protein uniprot:P11802
HIST1H4 Protein uniprot:P62805
UBC(153-228) Protein uniprot:P0CG48
EHMT1 Protein uniprot:Q9H9B1
VENTX Protein uniprot:O95231
UBB(153-228) Protein uniprot:P0CG47
UBC(229-304) Protein uniprot:P0CG48
p-T160-CDK2 Protein uniprot:P24941
p-4S,T356,T570-RPS6KA2 Protein uniprot:Q15349
UBC(533-608) Protein uniprot:P0CG48
HIST3H2BB Protein uniprot:Q8N257
IL6 Protein uniprot:P05231
p-4S,T231,T365-RPS6KA3 Protein uniprot:P51812
NFKB1(1-433) Protein uniprot:P19838
CDKN1A Protein uniprot:P38936
Me2K-10-H3F3A Protein uniprot:P84243
IGFBP7 gene Protein ensembl:ENSG00000163453
p-Y705-STAT3 Protein uniprot:P40763
UBC(457-532) Protein uniprot:P0CG48
p-FZR1 Protein uniprot:Q9UM11
p-T235-CEBPB Protein uniprot:P17676
IGFBP7 Protein uniprot:Q16270
RPS6KA1 Protein uniprot:Q15418
p-4S,T359,T573-RPS6KA1 Protein uniprot:Q15418
CDKN2B gene Protein ensembl:ENSG00000147883
CDK2 Protein uniprot:P24941
p-T218,Y220-MAPK7 Protein uniprot:Q13164

References

  1. Activation of interleukin-6 gene expression through the NF-kappa B transcription factor. Libermann TA, Baltimore D. Mol Cell Biol. 1990 May;10(5):2327–34. PubMed Europe PMC Scholia
  2. Telomeres shorten during ageing of human fibroblasts. Harley CB, Futcher AB, Greider CW. Nature. 1990 May 31;345(6274):458–60. PubMed Europe PMC Scholia
  3. Telomere reduction in human colorectal carcinoma and with ageing. Hastie ND, Dempster M, Dunlop MG, Thompson AM, Green DK, Allshire RC. Nature. 1990 Aug 30;346(6287):866–8. PubMed Europe PMC Scholia
  4. Involvement of a NF-kappa B-like transcription factor in the activation of the interleukin-6 gene by inflammatory lymphokines. Shimizu H, Mitomo K, Watanabe T, Okamoto S, Yamamoto K. Mol Cell Biol. 1990 Feb;10(2):561–8. PubMed Europe PMC Scholia
  5. The Mos/MAP kinase pathway stabilizes c-Fos by phosphorylation and augments its transforming activity in NIH 3T3 cells. Okazaki K, Sagata N. EMBO J. 1995 Oct 16;14(20):5048–59. PubMed Europe PMC Scholia
  6. Interleukin-6 family of cytokines and gp130. Kishimoto T, Akira S, Narazaki M, Taga T. Blood. 1995 Aug 15;86(4):1243–54. PubMed Europe PMC Scholia
  7. Crystal structure of the heterodimeric bZIP transcription factor c-Fos-c-Jun bound to DNA. Glover JN, Harrison SC. Nature. 1995 Jan 19;373(6511):257–61. PubMed Europe PMC Scholia
  8. Lack of cyclin D-Cdk complexes in Rb-negative cells correlates with high levels of p16INK4/MTS1 tumour suppressor gene product. Parry D, Bates S, Mann DJ, Peters G. EMBO J. 1995 Feb 1;14(3):503–11. PubMed Europe PMC Scholia
  9. Growth suppression by p18, a p16INK4/MTS1- and p14INK4B/MTS2-related CDK6 inhibitor, correlates with wild-type pRb function. Guan KL, Jenkins CW, Li Y, Nichols MA, Wu X, O’Keefe CL, et al. Genes Dev. 1994 Dec 15;8(24):2939–52. PubMed Europe PMC Scholia
  10. p15INK4B is a potential effector of TGF-beta-induced cell cycle arrest. Hannon GJ, Beach D. Nature. 1994 Sep 15;371(6494):257–61. PubMed Europe PMC Scholia
  11. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ. Cell. 1993 Nov 19;75(4):805–16. PubMed Europe PMC Scholia
  12. WAF1, a potential mediator of p53 tumor suppression. el-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, et al. Cell. 1993 Nov 19;75(4):817–25. PubMed Europe PMC Scholia
  13. A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Serrano M, Hannon GJ, Beach D. Nature. 1993 Dec 16;366(6456):704–7. PubMed Europe PMC Scholia
  14. The p53-mdm-2 autoregulatory feedback loop. Wu X, Bayle JH, Olson D, Levine AJ. Genes Dev. 1993 Jul;7(7A):1126–32. PubMed Europe PMC Scholia
  15. Phosphorylation at threonine-235 by a ras-dependent mitogen-activated protein kinase cascade is essential for transcription factor NF-IL6. Nakajima T, Kinoshita S, Sasagawa T, Sasaki K, Naruto M, Kishimoto T, et al. Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2207–11. PubMed Europe PMC Scholia
  16. NF-kappa B subunit-specific regulation of the interleukin-8 promoter. Kunsch C, Rosen CA. Mol Cell Biol. 1993 Oct;13(10):6137–46. PubMed Europe PMC Scholia
  17. Distinct mechanisms for regulation of the interleukin-8 gene involve synergism and cooperativity between C/EBP and NF-kappa B. Stein B, Baldwin AS Jr. Mol Cell Biol. 1993 Nov;13(11):7191–8. PubMed Europe PMC Scholia
  18. Ras-mediated phosphorylation of a conserved threonine residue enhances the transactivation activities of c-Ets1 and c-Ets2. Yang BS, Hauser CA, Henkel G, Colman MS, Van Beveren C, Stacey KJ, et al. Mol Cell Biol. 1996 Feb;16(2):538–47. PubMed Europe PMC Scholia
  19. Interleukin-1 alpha activates an NF-kappaB-like factor in osteoclast-like cells. Jimi E, Ikebe T, Takahashi N, Hirata M, Suda T, Koga T. J Biol Chem. 1996 Mar 1;271(9):4605–8. PubMed Europe PMC Scholia
  20. MKK3- and MKK6-regulated gene expression is mediated by the p38 mitogen-activated protein kinase signal transduction pathway. Raingeaud J, Whitmarsh AJ, Barrett T, Dérijard B, Davis RJ. Mol Cell Biol. 1996 Mar;16(3):1247–55. PubMed Europe PMC Scholia
  21. 3pK, a new mitogen-activated protein kinase-activated protein kinase located in the small cell lung cancer tumor suppressor gene region. Sithanandam G, Latif F, Duh FM, Bernal R, Smola U, Li H, et al. Mol Cell Biol. 1996 Mar;16(3):868–76. PubMed Europe PMC Scholia
  22. Identification of mitogen-activated protein (MAP) kinase-activated protein kinase-3, a novel substrate of CSBP p38 MAP kinase. McLaughlin MM, Kumar S, McDonnell PC, Van Horn S, Lee JC, Livi GP, et al. J Biol Chem. 1996 Apr 5;271(14):8488–92. PubMed Europe PMC Scholia
  23. Gp130, a shared signal transducing receptor component for hematopoietic and neuropoietic cytokines. Taga T. J Neurochem. 1996 Jul;67(1):1–10. PubMed Europe PMC Scholia
  24. The transcription factor AP-1 binds to the human interleukin 1 alpha promoter. Bailly S, Fay M, Israël N, Gougerot-Pocidalo MA. Eur Cytokine Netw. 1996;7(2):125–8. PubMed Europe PMC Scholia
  25. Isolation and characterization of p19INK4d, a p16-related inhibitor specific to CDK6 and CDK4. Guan KL, Jenkins CW, Li Y, O’Keefe CL, Noh S, Wu X, et al. Mol Biol Cell. 1996 Jan;7(1):57–70. PubMed Europe PMC Scholia
  26. A comparison of the substrate specificity of MAPKAP kinase-2 and MAPKAP kinase-3 and their activation by cytokines and cellular stress. Clifton AD, Young PR, Cohen P. FEBS Lett. 1996 Sep 2;392(3):209–14. PubMed Europe PMC Scholia
  27. Identification of novel phosphorylation sites required for activation of MAPKAP kinase-2. Ben-Levy R, Leighton IA, Doza YN, Attwood P, Morrice N, Marshall CJ, et al. EMBO J. 1995 Dec 1;14(23):5920–30. PubMed Europe PMC Scholia
  28. Dermatotoxic chemical stimulate of c-jun and c-fos transcription and AP-1 DNA binding in human keratinocytes. Burleson FG, Simeonova PP, Germolec DR, Luster MI. Res Commun Mol Pathol Pharmacol. 1996 Aug;93(2):131–48. PubMed Europe PMC Scholia
  29. The Xvent-2 homeobox gene is part of the BMP-4 signalling pathway controlling [correction of controling] dorsoventral patterning of Xenopus mesoderm. Onichtchouk D, Gawantka V, Dosch R, Delius H, Hirschfeld K, Blumenstock C, et al. Development. 1996 Oct;122(10):3045–53. PubMed Europe PMC Scholia
  30. An AP-1 site is involved in the NGF induction of IL-1 alpha in PC12 cells. Alheim K, McDowell TL, Symons JA, Duff GW, Bartfai T. Neurochem Int. 1996 Nov;29(5):487–96. PubMed Europe PMC Scholia
  31. Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways. Ichijo H, Nishida E, Irie K, ten Dijke P, Saitoh M, Moriguchi T, et al. Science. 1997 Jan 3;275(5296):90–4. PubMed Europe PMC Scholia
  32. Regulatory mechanisms involved in activator-protein-1 (AP-1)-mediated activation of glutathione-S-transferase gene expression by chemical agents. Ainbinder E, Bergelson S, Pinkus R, Daniel V. Eur J Biochem. 1997 Jan 15;243(1–2):49–57. PubMed Europe PMC Scholia
  33. Gp130 and the interleukin-6 family of cytokines. Taga T, Kishimoto T. Annu Rev Immunol. 1997;15:797–819. PubMed Europe PMC Scholia
  34. Characterization of the mitogen-activated protein kinase kinase 4 (MKK4)/c-Jun NH2-terminal kinase 1 and MKK3/p38 pathways regulated by MEK kinases 2 and 3. MEK kinase 3 activates MKK3 but does not cause activation of p38 kinase in vivo. Deacon K, Blank JL. J Biol Chem. 1997 May 30;272(22):14489–96. PubMed Europe PMC Scholia
  35. A novel mechanism of JNK1 activation. Nuclear translocation and activation of JNK1 during ischemia and reperfusion. Mizukami Y, Yoshioka K, Morimoto S, Yoshida K i. J Biol Chem. 1997 Jun 27;272(26):16657–62. PubMed Europe PMC Scholia
  36. Reactive oxygen species-induced DNA damage and its modification: a chemical investigation. Yu TW, Anderson D. Mutat Res. 1997 Oct 6;379(2):201–10. PubMed Europe PMC Scholia
  37. ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways. Zhang Y, Xiong Y, Yarbrough WG. Cell. 1998 Mar 20;92(6):725–34. PubMed Europe PMC Scholia
  38. Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. Saitoh M, Nishitoh H, Fujii M, Takeda K, Tobiume K, Sawada Y, et al. EMBO J. 1998 May 1;17(9):2596–606. PubMed Europe PMC Scholia
  39. PRAK, a novel protein kinase regulated by the p38 MAP kinase. New L, Jiang Y, Zhao M, Liu K, Zhu W, Flood LJ, et al. EMBO J. 1998 Jun 15;17(12):3372–84. PubMed Europe PMC Scholia
  40. gp130 and the IL-6 family of cytokines: signaling mechanisms and thrombopoietic activities. Nakashima K, Taga T. Semin Hematol. 1998 Jul;35(3):210–21. PubMed Europe PMC Scholia
  41. Involvement of the Ink4 proteins p16 and p15 in T-lymphocyte senescence. Erickson S, Sangfelt O, Heyman M, Castro J, Einhorn S, Grandér D. Oncogene. 1998 Aug 6;17(5):595–602. PubMed Europe PMC Scholia
  42. Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway. Heinrich PC, Behrmann I, Müller-Newen G, Schaper F, Graeve L. Biochem J. 1998 Sep 1;334 ( Pt 2)(Pt 2):297–314. PubMed Europe PMC Scholia
  43. Enhanced phosphorylation of p53 by ATM in response to DNA damage. Banin S, Moyal L, Shieh S, Taya Y, Anderson CW, Chessa L, et al. Science. 1998 Sep 11;281(5383):1674–7. PubMed Europe PMC Scholia
  44. Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Canman CE, Lim DS, Cimprich KA, Taya Y, Tamai K, Sakaguchi K, et al. Science. 1998 Sep 11;281(5383):1677–9. PubMed Europe PMC Scholia
  45. Mdm2 association with p53 targets its ubiquitination. Fuchs SY, Adler V, Buschmann T, Wu X, Ronai Z. Oncogene. 1998 Nov 12;17(19):2543–7. PubMed Europe PMC Scholia
  46. ATM associates with and phosphorylates p53: mapping the region of interaction. Khanna KK, Keating KE, Kozlov S, Scott S, Gatei M, Hobson K, et al. Nat Genet. 1998 Dec;20(4):398–400. PubMed Europe PMC Scholia
  47. p53- and ATM-dependent apoptosis induced by telomeres lacking TRF2. Karlseder J, Broccoli D, Dai Y, Hardy S, de Lange T. Science. 1999 Feb 26;283(5406):1321–5. PubMed Europe PMC Scholia
  48. Serotonin-inducible transcription of interleukin-1alpha in uterine smooth muscle cells requires an AP-1 site: cloning and partial characterization of the rat IL-1alpha promoter. Huang TT, Vinci JM, Lan L, Jeffrey JJ, Wilcox BD. Mol Cell Endocrinol. 1999 Jun 25;152(1–2):21–35. PubMed Europe PMC Scholia
  49. Accumulation of cyclin B1 requires E2F and cyclin-A-dependent rearrangement of the anaphase-promoting complex. Lukas C, Sørensen CS, Kramer E, Santoni-Rugiu E, Lindeneg C, Peters JM, et al. Nature. 1999 Oct 21;401(6755):815–8. PubMed Europe PMC Scholia
  50. Control of human telomere length by TRF1 and TRF2. Smogorzewska A, van Steensel B, Bianchi A, Oelmann S, Schaefer MR, Schnapp G, et al. Mol Cell Biol. 2000 Mar;20(5):1659–68. PubMed Europe PMC Scholia
  51. Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53. Fang S, Jensen JP, Ludwig RL, Vousden KH, Weissman AM. J Biol Chem. 2000 Mar 24;275(12):8945–51. PubMed Europe PMC Scholia
  52. Cellular response to oncogenic ras involves induction of the Cdk4 and Cdk6 inhibitor p15(INK4b). Malumbres M, Pérez De Castro I, Hernández MI, Jiménez M, Corral T, Pellicer A. Mol Cell Biol. 2000 Apr;20(8):2915–25. PubMed Europe PMC Scholia
  53. Turning mesoderm into blood: the formation of hematopoietic stem cells during embryogenesis. Davidson AJ, Zon LI. Curr Top Dev Biol. 2000;50:45–60. PubMed Europe PMC Scholia
  54. Synergistic activation of stress-activated protein kinase 1/c-Jun N-terminal kinase (SAPK1/JNK) isoforms by mitogen-activated protein kinase kinase 4 (MKK4) and MKK7. Fleming Y, Armstrong CG, Morrice N, Paterson A, Goedert M, Cohen P. Biochem J. 2000 Nov 15;352 Pt 1(Pt 1):145–54. PubMed Europe PMC Scholia
  55. Interleukin-6-induced tethering of STAT3 to the LAP/C/EBPbeta promoter suggests a new mechanism of transcriptional regulation by STAT3. Niehof M, Streetz K, Rakemann T, Bischoff SC, Manns MP, Horn F, et al. J Biol Chem. 2001 Mar 23;276(12):9016–27. PubMed Europe PMC Scholia
  56. Opposing effects of Ets and Id proteins on p16INK4a expression during cellular senescence. Ohtani N, Zebedee Z, Huot TJ, Stinson JA, Sugimoto M, Ohashi Y, et al. Nature. 2001 Feb 22;409(6823):1067–70. PubMed Europe PMC Scholia
  57. A conserved cyclin-binding domain determines functional interplay between anaphase-promoting complex-Cdh1 and cyclin A-Cdk2 during cell cycle progression. Sørensen CS, Lukas C, Kramer ER, Peters JM, Bartek J, Lukas J. Mol Cell Biol. 2001 Jun;21(11):3692–703. PubMed Europe PMC Scholia
  58. The homeobox genes vox and vent are redundant repressors of dorsal fates in zebrafish. Imai Y, Gates MA, Melby AE, Kimelman D, Schier AF, Talbot WS. Development. 2001 Jun;128(12):2407–20. PubMed Europe PMC Scholia
  59. Molecular cloning of a human Vent-like homeobox gene. Moretti PA, Davidson AJ, Baker E, Lilley B, Zon LI, D’Andrea RJ. Genomics. 2001 Aug;76(1–3):21–9. PubMed Europe PMC Scholia
  60. Use of chromatin immunoprecipitation to clone novel E2F target promoters. Weinmann AS, Bartley SM, Zhang T, Zhang MQ, Farnham PJ. Mol Cell Biol. 2001 Oct;21(20):6820–32. PubMed Europe PMC Scholia
  61. Regulation of the anaphase-promoting complex by the dual specificity phosphatase human Cdc14a. Bembenek J, Yu H. J Biol Chem. 2001 Dec 21;276(51):48237–42. PubMed Europe PMC Scholia
  62. Transcriptional regulation of the human tumor suppressor p14(ARF) by E2F1, E2F2, E2F3, and Sp1-like factors. Parisi T, Pollice A, Di Cristofano A, Calabrò V, La Mantia G. Biochem Biophys Res Commun. 2002 Mar 15;291(5):1138–45. PubMed Europe PMC Scholia
  63. Molecular interpretation of ERK signal duration by immediate early gene products. Murphy LO, Smith S, Chen RH, Fingar DC, Blenis J. Nat Cell Biol. 2002 Aug;4(8):556–64. PubMed Europe PMC Scholia
  64. Structure of mitogen-activated protein kinase-activated protein (MAPKAP) kinase 2 suggests a bifunctional switch that couples kinase activation with nuclear export. Meng W, Swenson LL, Fitzgibbon MJ, Hayakawa K, Ter Haar E, Behrens AE, et al. J Biol Chem. 2002 Oct 4;277(40):37401–5. PubMed Europe PMC Scholia
  65. Phosphorylation-dependent scaffolding role of JSAP1/JIP3 in the ASK1-JNK signaling pathway. A new mode of regulation of the MAP kinase cascade. Matsuura H, Nishitoh H, Takeda K, Matsuzawa A, Amagasa T, Ito M, et al. J Biol Chem. 2002 Oct 25;277(43):40703–9. PubMed Europe PMC Scholia
  66. Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein. Kuzmichev A, Nishioka K, Erdjument-Bromage H, Tempst P, Reinberg D. Genes Dev. 2002 Nov 15;16(22):2893–905. PubMed Europe PMC Scholia
  67. Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Heinrich PC, Behrmann I, Haan S, Hermanns HM, Müller-Newen G, Schaper F. Biochem J. 2003 Aug 15;374(Pt 1):1–20. PubMed Europe PMC Scholia
  68. Regulation of PRAK subcellular location by p38 MAP kinases. New L, Jiang Y, Han J. Mol Biol Cell. 2003 Jun;14(6):2603–16. PubMed Europe PMC Scholia
  69. Phosphorylation of p90 ribosomal S6 kinase (RSK) regulates extracellular signal-regulated kinase docking and RSK activity. Roux PP, Richards SA, Blenis J. Mol Cell Biol. 2003 Jul;23(14):4796–804. PubMed Europe PMC Scholia
  70. Smad3 regulates senescence and malignant conversion in a mouse multistage skin carcinogenesis model. Vijayachandra K, Lee J, Glick AB. Cancer Res. 2003 Jul 1;63(13):3447–52. PubMed Europe PMC Scholia
  71. EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer. Bracken AP, Pasini D, Capra M, Prosperini E, Colli E, Helin K. EMBO J. 2003 Oct 15;22(20):5323–35. PubMed Europe PMC Scholia
  72. Identification of an autoregulatory feedback pathway involving interleukin-1alpha in induction of constitutive NF-kappaB activation in pancreatic cancer cells. Niu J, Li Z, Peng B, Chiao PJ. J Biol Chem. 2004 Apr 16;279(16):16452–62. PubMed Europe PMC Scholia
  73. Catalysis and function of the p38 alpha.MK2a signaling complex. Lukas SM, Kroe RR, Wildeson J, Peet GW, Frego L, Davidson W, et al. Biochemistry. 2004 Aug 10;43(31):9950–60. PubMed Europe PMC Scholia
  74. Ras/mitogen-activated protein kinase signaling activates Ets-1 and Ets-2 by CBP/p300 recruitment. Foulds CE, Nelson ML, Blaszczak AG, Graves BJ. Mol Cell Biol. 2004 Dec;24(24):10954–64. PubMed Europe PMC Scholia
  75. Smurf2 up-regulation activates telomere-dependent senescence. Zhang H, Cohen SN. Genes Dev. 2004 Dec 15;18(24):3028–40. PubMed Europe PMC Scholia
  76. Histone methyltransferases G9a and GLP form heteromeric complexes and are both crucial for methylation of euchromatin at H3-K9. Tachibana M, Ueda J, Fukuda M, Takeda N, Ohta T, Iwanari H, et al. Genes Dev. 2005 Apr 1;19(7):815–26. PubMed Europe PMC Scholia
  77. ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex. Lee JH, Paull TT. Science. 2005 Apr 22;308(5721):551–4. PubMed Europe PMC Scholia
  78. Conserved docking site is essential for activation of mammalian MAP kinase kinases by specific MAP kinase kinase kinases. Takekawa M, Tatebayashi K, Saito H. Mol Cell. 2005 Apr 29;18(3):295–306. PubMed Europe PMC Scholia
  79. Shelterin: the protein complex that shapes and safeguards human telomeres. de Lange T. Genes Dev. 2005 Sep 15;19(18):2100–10. PubMed Europe PMC Scholia
  80. Involvement of MINK, a Ste20 family kinase, in Ras oncogene-induced growth arrest in human ovarian surface epithelial cells. Nicke B, Bastien J, Khanna SJ, Warne PH, Cowling V, Cook SJ, et al. Mol Cell. 2005 Dec 9;20(5):673–85. PubMed Europe PMC Scholia
  81. The MAP kinase ERK5 binds to and phosphorylates p90 RSK. Ranganathan A, Pearson GW, Chrestensen CA, Sturgill TW, Cobb MH. Arch Biochem Biophys. 2006 May 15;449(1–2):8–16. PubMed Europe PMC Scholia
  82. pRB family proteins are required for H3K27 trimethylation and Polycomb repression complexes binding to and silencing p16INK4alpha tumor suppressor gene. Kotake Y, Cao R, Viatour P, Sage J, Zhang Y, Xiong Y. Genes Dev. 2007 Jan 1;21(1):49–54. PubMed Europe PMC Scholia
  83. PRAK is essential for ras-induced senescence and tumor suppression. Sun P, Yoshizuka N, New L, Moser BA, Li Y, Liao R, et al. Cell. 2007 Jan 26;128(2):295–308. PubMed Europe PMC Scholia
  84. The Polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in senescent cells. Bracken AP, Kleine-Kohlbrecher D, Dietrich N, Pasini D, Gargiulo G, Beekman C, et al. Genes Dev. 2007 Mar 1;21(5):525–30. PubMed Europe PMC Scholia
  85. Molecular basis of MAPK-activated protein kinase 2:p38 assembly. White A, Pargellis CA, Studts JM, Werneburg BG, Farmer BT 2nd. Proc Natl Acad Sci U S A. 2007 Apr 10;104(15):6353–8. PubMed Europe PMC Scholia
  86. Sox3 expression is maintained by FGF signaling and restricted to the neural plate by Vent proteins in the Xenopus embryo. Rogers CD, Archer TC, Cunningham DD, Grammer TC, Casey EMS. Dev Biol. 2008 Jan 1;313(1):307–19. PubMed Europe PMC Scholia
  87. Oncogenic BRAF induces senescence and apoptosis through pathways mediated by the secreted protein IGFBP7. Wajapeyee N, Serra RW, Zhu X, Mahalingam M, Green MR. Cell. 2008 Feb 8;132(3):363–74. PubMed Europe PMC Scholia
  88. p16(INK4a) translation suppressed by miR-24. Lal A, Kim HH, Abdelmohsen K, Kuwano Y, Pullmann R Jr, Srikantan S, et al. PLoS One. 2008 Mar 26;3(3):e1864. PubMed Europe PMC Scholia
  89. Interleukin 1alpha-induced NFkappaB activation and chemokine mRNA stabilization diverge at IRAK1. Hartupee J, Li X, Hamilton T. J Biol Chem. 2008 Jun 6;283(23):15689–93. PubMed Europe PMC Scholia
  90. Chemokine signaling via the CXCR2 receptor reinforces senescence. Acosta JC, O’Loghlen A, Banito A, Guijarro MV, Augert A, Raguz S, et al. Cell. 2008 Jun 13;133(6):1006–18. PubMed Europe PMC Scholia
  91. Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Kuilman T, Michaloglou C, Vredeveld LCW, Douma S, van Doorn R, Desmet CJ, et al. Cell. 2008 Jun 13;133(6):1019–31. PubMed Europe PMC Scholia
  92. The Pellino family: IRAK E3 ligases with emerging roles in innate immune signalling. Moynagh PN. Trends Immunol. 2009 Jan;30(1):33–42. PubMed Europe PMC Scholia
  93. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. Coppé JP, Patil CK, Rodier F, Sun Y, Muñoz DP, Goldstein J, et al. PLoS Biol. 2008 Dec 2;6(12):2853–68. PubMed Europe PMC Scholia
  94. SASP reflects senescence. Young ARJ, Narita M. EMBO Rep. 2009 Mar;10(3):228–30. PubMed Europe PMC Scholia
  95. Immunological and inflammatory functions of the interleukin-1 family. Dinarello CA. Annu Rev Immunol. 2009;27:519–50. PubMed Europe PMC Scholia
  96. The H3K27me3 demethylase JMJD3 contributes to the activation of the INK4A-ARF locus in response to oncogene- and stress-induced senescence. Agger K, Cloos PAC, Rudkjaer L, Williams K, Andersen G, Christensen J, et al. Genes Dev. 2009 May 15;23(10):1171–6. PubMed Europe PMC Scholia
  97. Histone demethylase JMJD3 contributes to epigenetic control of INK4a/ARF by oncogenic RAS. Barradas M, Anderton E, Acosta JC, Li S, Banito A, Rodriguez-Niedenführ M, et al. Genes Dev. 2009 May 15;23(10):1177–82. PubMed Europe PMC Scholia
  98. Polycomb mediated epigenetic silencing and replication timing at the INK4a/ARF locus during senescence. Agherbi H, Gaussmann-Wenger A, Verthuy C, Chasson L, Serrano M, Djabali M. PLoS One. 2009 May 20;4(5):e5622. PubMed Europe PMC Scholia
  99. Mitochondrial dysfunction contributes to oncogene-induced senescence. Moiseeva O, Bourdeau V, Roux A, Deschênes-Simard X, Ferbeyre G. Mol Cell Biol. 2009 Aug;29(16):4495–507. PubMed Europe PMC Scholia
  100. Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Rodier F, Coppé JP, Patil CK, Hoeijmakers WAM, Muñoz DP, Raza SR, et al. Nat Cell Biol. 2009 Aug;11(8):973–9. PubMed Europe PMC Scholia
  101. Cell surface-bound IL-1alpha is an upstream regulator of the senescence-associated IL-6/IL-8 cytokine network. Orjalo AV, Bhaumik D, Gengler BK, Scott GK, Campisi J. Proc Natl Acad Sci U S A. 2009 Oct 6;106(40):17031–6. PubMed Europe PMC Scholia
  102. VentX, a novel lymphoid-enhancing factor/T-cell factor-associated transcription repressor, is a putative tumor suppressor. Gao H, Le Y, Wu X, Silberstein LE, Giese RW, Zhu Z. Cancer Res. 2010 Jan 1;70(1):202–11. PubMed Europe PMC Scholia
  103. RSK-mediated phosphorylation in the C/EBP{beta} leucine zipper regulates DNA binding, dimerization, and growth arrest activity. Lee S, Shuman JD, Guszczynski T, Sakchaisri K, Sebastian T, Copeland TD, et al. Mol Cell Biol. 2010 Jun;30(11):2621–35. PubMed Europe PMC Scholia
  104. IL-6: from its discovery to clinical applications. Kishimoto T. Int Immunol. 2010 May;22(5):347–52. PubMed Europe PMC Scholia
  105. CCAAT/Enhancer-binding protein beta DNA binding is auto-inhibited by multiple elements that also mediate association with p300/CREB-binding protein (CBP). Lee S, Miller M, Shuman JD, Johnson PF. J Biol Chem. 2010 Jul 9;285(28):21399–410. PubMed Europe PMC Scholia
  106. Ras signaling requires dynamic properties of Ets1 for phosphorylation-enhanced binding to coactivator CBP. Nelson ML, Kang HS, Lee GM, Blaszczak AG, Lau DKW, McIntosh LP, et al. Proc Natl Acad Sci U S A. 2010 Jun 1;107(22):10026–31. PubMed Europe PMC Scholia
  107. Transforming growth factor-beta induces senescence in hepatocellular carcinoma cells and inhibits tumor growth. Senturk S, Mumcuoglu M, Gursoy-Yuzugullu O, Cingoz B, Akcali KC, Ozturk M. Hepatology. 2010 Sep;52(3):966–74. PubMed Europe PMC Scholia
  108. Regulation of C/EBPbeta1 by Ras in mammary epithelial cells and the role of C/EBPbeta1 in oncogene-induced senescence. Atwood AA, Sealy L. Oncogene. 2010 Nov 11;29(45):6004–15. PubMed Europe PMC Scholia
  109. The vent-like homeobox gene VENTX promotes human myeloid differentiation and is highly expressed in acute myeloid leukemia. Rawat VPS, Arseni N, Ahmed F, Mulaw MA, Thoene S, Heilmeier B, et al. Proc Natl Acad Sci U S A. 2010 Sep 28;107(39):16946–51. PubMed Europe PMC Scholia
  110. The homeobox transcription factor VentX controls human macrophage terminal differentiation and proinflammatory activation. Wu X, Gao H, Ke W, Giese RW, Zhu Z. J Clin Invest. 2011 Jul;121(7):2599–613. PubMed Europe PMC Scholia
  111. The dynamics of vertebrate homeobox gene evolution: gain and loss of genes in mouse and human lineages. Zhong Y fu, Holland PWH. BMC Evol Biol. 2011 Jun 16;11:169. PubMed Europe PMC Scholia
  112. C/EBPβ’s role in determining Ras-induced senescence or transformation. Atwood AA, Sealy LJ. Small GTPases. 2011 Jan;2(1):41–6. PubMed Europe PMC Scholia
  113. Control of the senescence-associated secretory phenotype by NF-κB promotes senescence and enhances chemosensitivity. Chien Y, Scuoppo C, Wang X, Fang X, Balgley B, Bolden JE, et al. Genes Dev. 2011 Oct 15;25(20):2125–36. PubMed Europe PMC Scholia
  114. RAS oncogenes: weaving a tumorigenic web. Pylayeva-Gupta Y, Grabocka E, Bar-Sagi D. Nat Rev Cancer. 2011 Oct 13;11(11):761–74. PubMed Europe PMC Scholia
  115. Loss of the candidate tumor suppressor BTG3 triggers acute cellular senescence via the ERK-JMJD3-p16(INK4a) signaling axis. Lin TY, Cheng YC, Yang HC, Lin WC, Wang CC, Lai PL, et al. Oncogene. 2012 Jul 5;31(27):3287–97. PubMed Europe PMC Scholia
  116. DNA damage signaling triggers degradation of histone methyltransferases through APC/C(Cdh1) in senescent cells. Takahashi A, Imai Y, Yamakoshi K, Kuninaka S, Ohtani N, Yoshimoto S, et al. Mol Cell. 2012 Jan 13;45(1):123–31. PubMed Europe PMC Scholia
  117. PCGF homologs, CBX proteins, and RYBP define functionally distinct PRC1 family complexes. Gao Z, Zhang J, Bonasio R, Strino F, Sawai A, Parisi F, et al. Mol Cell. 2012 Feb 10;45(3):344–56. PubMed Europe PMC Scholia
  118. Regulation of p14ARF expression by miR-24: a potential mechanism compromising the p53 response during retinoblastoma development. To KH, Pajovic S, Gallie BL, Thériault BL. BMC Cancer. 2012 Feb 15;12:69. PubMed Europe PMC Scholia
  119. A comprehensive survey of Ras mutations in cancer. Prior IA, Lewis PD, Mattos C. Cancer Res. 2012 May 15;72(10):2457–67. PubMed Europe PMC Scholia
  120. Plasticity and cross-talk of interleukin 6-type cytokines. Garbers C, Hermanns HM, Schaper F, Müller-Newen G, Grötzinger J, Rose-John S, et al. Cytokine Growth Factor Rev. 2012 Jun;23(3):85–97. PubMed Europe PMC Scholia
  121. Ventx factors function as Nanog-like guardians of developmental potential in Xenopus. Scerbo P, Girardot F, Vivien C, Markov GV, Luxardi G, Demeneix B, et al. PLoS One. 2012;7(5):e36855. PubMed Europe PMC Scholia
  122. A polymorphism in the upstream regulatory region of the interleukin-1α gene confers differential binding by transcription factors of the AP-1 family. Moerman-Herzog AM, Barger SW. Life Sci. 2012 Jun 27;90(25–26):975–9. PubMed Europe PMC Scholia
  123. A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Acosta JC, Banito A, Wuestefeld T, Georgilis A, Janich P, Morton JP, et al. Nat Cell Biol. 2013 Aug;15(8):978–90. PubMed Europe PMC Scholia
  124. N-myc downstream-regulated gene 1 promotes tumor inflammatory angiogenesis through JNK activation and autocrine loop of interleukin-1α by human gastric cancer cells. Murakami Y, Watari K, Shibata T, Uba M, Ureshino H, Kawahara A, et al. J Biol Chem. 2013 Aug 30;288(35):25025–37. PubMed Europe PMC Scholia
  125. Tumor adaptation and resistance to RAF inhibitors. Lito P, Rosen N, Solit DB. Nat Med. 2013 Nov;19(11):1401–9. PubMed Europe PMC Scholia
  126. Dragging ras back in the ring. Stephen AG, Esposito D, Bagni RK, McCormick F. Cancer Cell. 2014 Mar 17;25(3):272–81. PubMed Europe PMC Scholia
  127. Homeobox transcription factor VentX regulates differentiation and maturation of human dendritic cells. Wu X, Gao H, Bleday R, Zhu Z. J Biol Chem. 2014 May 23;289(21):14633–43. PubMed Europe PMC Scholia
  128. An expanding role for RAS GTPase activating proteins (RAS GAPs) in cancer. Maertens O, Cichowski K. Adv Biol Regul. 2014 May;55:1–14. PubMed Europe PMC Scholia
  129. Targeting RAS-ERK signalling in cancer: promises and challenges. Samatar AA, Poulikakos PI. Nat Rev Drug Discov. 2014 Dec;13(12):928–42. PubMed Europe PMC Scholia
  130. Early Growth Response 3 regulates genes of inflammation and directly activates IL6 and IL8 expression in prostate cancer. Baron VT, Pio R, Jia Z, Mercola D. Br J Cancer. 2015 Feb 17;112(4):755–64. PubMed Europe PMC Scholia
  131. Regulation of RAF protein kinases in ERK signalling. Lavoie H, Therrien M. Nat Rev Mol Cell Biol. 2015 May;16(5):281–98. PubMed Europe PMC Scholia
  132. Forging a signature of in vivo senescence. Sharpless NE, Sherr CJ. Nat Rev Cancer. 2015 Jul;15(7):397–408. PubMed Europe PMC Scholia
  133. The interleukin (IL)-1 cytokine family--Balance between agonists and antagonists in inflammatory diseases. Palomo J, Dietrich D, Martin P, Palmer G, Gabay C. Cytokine. 2015 Nov;76(1):25–37. PubMed Europe PMC Scholia
  134. The homeobox gene DLX4 regulates erythro-megakaryocytic differentiation by stimulating IL-1β and NF-κB signaling. Trinh BQ, Barengo N, Kim SB, Lee JS, Zweidler-McKay PA, Naora H. J Cell Sci. 2015 Aug 15;128(16):3055–67. PubMed Europe PMC Scholia
  135. Modular organization of Interleukin-6 and Interleukin-11 α-receptors. Nitz R, Lokau J, Aparicio-Siegmund S, Scheller J, Garbers C. Biochimie. 2015 Dec;119:175–82. PubMed Europe PMC Scholia
  136. Homeobox protein VentX induces p53-independent apoptosis in cancer cells. Gao H, Wu B, Le Y, Zhu Z. Oncotarget. 2016 Jun 28;7(26):39719–29. PubMed Europe PMC Scholia
  137. Detection of Oncogene-Induced Senescence In Vivo. Baek KH, Ryeom S. Methods Mol Biol. 2017;1534:185–98. PubMed Europe PMC Scholia
  138. Lineage commitment of embryonic cells involves MEK1-dependent clearance of pluripotency regulator Ventx2. Scerbo P, Marchal L, Kodjabachian L. Elife. 2017 Jun 27;6:e21526. PubMed Europe PMC Scholia
  139. The homeobox protein VentX reverts immune suppression in the tumor microenvironment. Le Y, Gao H, Bleday R, Zhu Z. Nat Commun. 2018 Jun 5;9(1):2175. PubMed Europe PMC Scholia
  140. Ventx1.1 as a Direct Repressor of Early Neural Gene zic3 in Xenopus laevis. Umair Z, Kumar S, Kim DH, Rafiq K, Kumar V, Kim S, et al. Mol Cells. 2018 Dec 31;41(12):1061–71. PubMed Europe PMC Scholia