Prostaglandin and leukotriene metabolism in senescence (WP5321)

Homo sapiens

Prostaglandins are active lipid molecules that are shown to have a great impact on cellular senescence (Wiley et al., 2021). Prostaglandins are derived from arachidonic acid, which is cleaved by the enzyme cytosolic phospholipase A2 (cPLA2) from the membrane phospholipids (Yang et al., 2011). The cyclooxygenase 2 (COX-2)-prostaglandin E2 (PGE2) pathway takes part in the induction, as well as the maintenance of senescence. COX-2 is the inducing enzyme which causes the conversion of AA into PGH2 and PGG2, which are then readily converted into PGF2⍺, PGD2, PGE2, PGI2, and TxA2 through prostaglandin synthases (Cormenier et al., 2017; Martien et al., 2013). The produced active prostaglandins can then act on intracellular receptors and trigger a downward signalling cascade, leading to the stimulation or inhibition of cAMP or the stimulation of Ca2+. The cAMP-dependent pathway leads to the stimulation of the insulin-like growth factor binding protein 5 (IGFBP5) production, which then also activates p53. P53 activation reinforces senescence by stimulating the expression of COX mRNA, thus creating a positive feedback loop (Yang et al., 2011). Two important active prostaglandins, namely dihomo-15d-PGJ2 and 15d-PGJ2 are highly elevated in senescent cells and induce COX-1 and 2, PTGES and PTGDS production through the activation of RAS and subsequently p53, reinforcing the positive feedback loop. Dihomo-15d-PGJ2 is the most highly elevated senescence-associated prostaglandin and is produced by the elongation of arachidonic acid into adrenic acid, which is then enzymatically converted to yield the prostaglandin. 15d-PGJ2 on the other hand is produced through the dehydration of the active prostaglandin PGD2. In addition, RAS stimulates the secretion of SASP factors, which can consequently affect surrounding cells (Wiley et al., 2021). Leukotrienes play an important role in the pathogenesis of inflammation. Just like prostaglandins, leukotrienes are synthesized from arachidonic acid that was cleaved from the membrane phospholipids (Wiley et al., 2019). ALOX12, ALOX15, ALOX5AP, LTC4S, LTA4H, ALOX15B and ALOX5, which are enzymes that conversion of arachidonic acid to either leukotriene A4 (LT4A) or Arachidonic acid 5-hydroperoxide (5-HPETE), are upregulated in senescence (Wiley et al., 2019; H�ƒÆ’�‚¤fner et al., 2019). The produced LTA4 can be converted into LTB4 or LTC4. LTC4 can then be consecutively cleaved into LTD4 and LTE4 (Suryadevara et al., 2020). All the mentioned leukotrienes are increased in cellular senescence and are thought to be part of the SASP (Lin & Xu, 2020). LTD4 is of particular importance in cellular senescence due to its increased interaction with the cysteinyl leukotriene receptor 1 (CysLT1R) (Wei et al., 2018; Song et al., 2019). This interaction has various consequences, such as the release of intracellular Ca2+, an increase of p21 and it also inhibits sirtuin 1 (SIRT1). SIRT1 regulates the cell cycle by inhibiting the phosphorylation of p53 and the release of various cytokines (Wei et al., 2018). Therefore, it increases the release of pro-inflammatory cytokines and induce cellular senescence via the activation of p53 (Song et al., 2019). ALOX5 contributes to an increase in reactive oxygen species (ROS) (Catalano et al., 2005; Menna et al., 2010). These ROS are thought to activate p53 which binds to ALOX5 and further increases its action (H�ƒÆ’�‚¤fner et al., 2019). Moreover, ALOX5 uses Ca2+ as a cofactor and its increased intracellular concentration further promotes ALOX5's action (Menna et al., 2010). LTB4 is also stimulates the production of ROS. ALOX5 then stimulates the phosphorylation of p53 and activates p21 (Menna et al., 2010; Catalano et al., 2005). This then causes the dephosphorylation of the retinoblastoma protein (RB1). As a consequence, senescence is induced (Catalano et al., 2005).

Authors

Nadia Simone Jonckheere and Eric Weitz

Activity

last edited

Discuss this pathway

Check for ongoing discussions or start your own.

Cited In

Are you planning to include this pathway in your next publication? See How to Cite and add a link here to your paper once it's online.

Organisms

Homo sapiens

Communities

Annotations

Pathway Ontology

aging pathway leukotriene metabolic pathway prostaglandin metabolic pathway

Participants

Label Type Compact URI Comment
PGH2 Metabolite chebi:15554
dihomo-15d-PGJ2 Metabolite pubchem.compound:16061095
ROS Metabolite chebi:26523
PGI2 Metabolite chebi:15552
PGE2 Metabolite chebi:15551
TXA2 Metabolite chebi:15627
PGG2 Metabolite chebi:27647
Adrenic acid Metabolite chebi:53487
Arachidonic acid Metabolite hmdb:HMDB01043
Membrane phospholipids Metabolite chebi:16247
PGD2 Metabolite chebi:15555
cAMP Metabolite hmdb:HMDB00058
15d-PGJ2 Metabolite chebi:34159
PGF2alpha Metabolite chebi:15553
Ca2+ Metabolite chebi:29108
LTB4 Metabolite chebi:15647
5-HPETE Metabolite hmdb:HMDB11135
LTD4 Metabolite chebi:28666
p53 Metabolite chebi:77731
LTA4 Metabolite chebi:15651
LTE4 Metabolite chebi:15650
LTC4 Metabolite chebi:16978
GGT1 GeneProduct ensembl:ENSG00000100031
ALOX5AP GeneProduct ensembl:ENSG00000012779
PTGES GeneProduct ensembl:ENSG00000148344
Gs GeneProduct ensembl:ENSG00000087460
DPEP2 GeneProduct ensembl:ENSG00000167261
COX-1 GeneProduct ensembl:ENSG00000095303
COX-2 GeneProduct ensembl:ENSG00000073756
IGFBP5 GeneProduct ensembl:ENSG00000115461
LTC4H GeneProduct ensembl:ENSG00000213316
GGT5 GeneProduct ensembl:ENSG00000099998
LTD4 DPEP GeneProduct ensembl:ENSG00000167261
EP2 (extracellular) GeneProduct ensembl:ENSG00000125384
PTGDS GeneProduct ensembl:ENSG00000107317
LTA4H GeneProduct ensembl:ENSG00000111144
p38 MAPK GeneProduct ensembl:ENSG00000185386
PGD Synthase GeneProduct ensembl:ENSG00000107317
PGE Synthase GeneProduct hgnc.symbol:PTGES
PGI Synthase GeneProduct ensembl:ENSG00000124212
TxA Synthase GeneProduct ensembl:ENSG00000059377
PGF Synthase GeneProduct uniprot:Q8TBF2
EP1 (extracellular) GeneProduct ensembl:ENSG00000160951
EP3 (extracellular) GeneProduct ensembl:ENSG00000050628
EP4 (extracellular) GeneProduct ensembl:ENSG00000171522
Gi GeneProduct ensembl:ENSG00000127955
Gq GeneProduct ensembl:ENSG00000156052
ALOX5AP GeneProduct ensembl:ENSG00000132965
ALOX5 GeneProduct ensembl:ENSG00000012779
LTC4S GeneProduct ensembl:ENSG00000213316
ALOX15B GeneProduct ensembl:ENSG00000179593
RB1 GeneProduct ensembl:ENSG00000139687
ALOX15 GeneProduct ensembl:ENSG00000161905
SIRT1 GeneProduct ensembl:ENSG00000096717
ALOX12 GeneProduct ensembl:ENSG00000108839
Adenylate cyclase Protein uniprot:A0A0A0MSC1
Cytosolic phospholipase A2 Protein uniprot:P47712
PLC Protein uniprot:A0A087WT80
RAS Protein uniprot:P01112
p21 Protein uniprot:A0A024RCX5
CysLT1R Protein uniprot:Q9Y271

References

  1. 5-Lipoxygenase regulates senescence-like growth arrest by promoting ROS-dependent p53 activation. Catalano A, Rodilossi S, Caprari P, Coppola V, Procopio A. EMBO J. 2005 Jan 12;24(1):170–9. PubMed Europe PMC Scholia
  2. Lipoxygenase inhibitors for cancer prevention: promises and risks. Menna C, Olivieri F, Catalano A, Procopio A. Curr Pharm Des. 2010;16(6):725–33. PubMed Europe PMC Scholia
  3. Involvement of IGF binding protein 5 in prostaglandin E(2)-induced cellular senescence in human fibroblasts. Yang HH, Kim C, Jung B, Kim KS, Kim JR. Biogerontology. 2011 Jun;12(3):239–52. PubMed Europe PMC Scholia
  4. The ATF6α arm of the Unfolded Protein Response mediates replicative senescence in human fibroblasts through a COX2/prostaglandin E2 intracrine pathway. Cormenier J, Martin N, Deslé J, Salazar-Cardozo C, Pourtier A, Abbadie C, et al. Mech Ageing Dev. 2018 Mar;170:82–91. PubMed Europe PMC Scholia
  5. Leukotriene D4 induces cellular senescence in osteoblasts. Wei J, Chen S, Guo W, Feng B, Yang S, Huang C, et al. Int Immunopharmacol. 2018 May;58:154–9. PubMed Europe PMC Scholia
  6. Beyond leukotriene formation-The noncanonical functions of 5-lipoxygenase. Häfner AK, Kahnt AS, Steinhilber D. Prostaglandins Other Lipid Mediat. 2019 Jun;142:24–32. PubMed Europe PMC Scholia
  7. Secretion of leukotrienes by senescent lung fibroblasts promotes pulmonary fibrosis. Wiley CD, Brumwell AN, Davis SS, Jackson JR, Valdovinos A, Calhoun C, et al. JCI Insight. 2019 Dec 19;4(24):e130056. PubMed Europe PMC Scholia
  8. Lipid Mediators Regulate Pulmonary Fibrosis: Potential Mechanisms and Signaling Pathways. Suryadevara V, Ramchandran R, Kamp DW, Natarajan V. Int J Mol Sci. 2020 Jun 15;21(12):4257. PubMed Europe PMC Scholia
  9. Fibroblast Senescence in Idiopathic Pulmonary Fibrosis. Lin Y, Xu Z. Front Cell Dev Biol. 2020 Nov 25;8:593283. PubMed Europe PMC Scholia
  10. Oxylipin biosynthesis reinforces cellular senescence and allows detection of senolysis. Wiley CD, Sharma R, Davis SS, Lopez-Dominguez JA, Mitchell KP, Wiley S, et al. Cell Metab. 2021 Jun 1;33(6):1124-1136.e5. PubMed Europe PMC Scholia