Acetogenesis (WP5019)

Acetobacterium woodii

Acetogenesis from H2 and CO2 in Acetobacterium woodii, based on Figure 3 from Diender et al (2015) [PMID:26635746]. This pathway model shows both proposed theoretical pathways of CO conversion to acetate, as well as the acetogenic metabolism driven by CO co-fermented with formate. Two large complexes are involved in this process (top right corner): 1. the RnF complex (sodium ion transport outside of the cell membrane) 2. the ATPase complex (sodium ion translocation to inner cell membrane).

Authors

Lars Willighagen , Kristina Hanspers , and Denise Slenter

Activity

last edited

Discuss this pathway

Check for ongoing discussions or start your own.

Cited In

Are you planning to include this pathway in your next publication? See How to Cite and add a link here to your paper once it's online.

Organisms

Communities

Annotations

Pathway Ontology

classic metabolic pathway carbon fixation pathway

Participants

Label Type Compact URI Comment
formate Metabolite chebi:15740
ATP Metabolite chebi:30616
hydron Metabolite chebi:15378
5-Methyltetrahydrofolate Metabolite chebi:15641
HSCoA Metabolite chebi:15346
ADP Metabolite chebi:456216
5,10-Methylenetetrahydrofolate Metabolite chebi:1989
dihydrogen Metabolite chebi:18276
acetate Metabolite chebi:30089
carbon dioxide Metabolite chebi:16526
carbon monooxide Metabolite chebi:17245
methyl Metabolite chebi:32875
5,10-Methenyltetrahydrofolate Metabolite chebi:15638
10-Formyltetrahydrofolate Metabolite chebi:15637
Tetrahydrofolate Metabolite chebi:20506
hydrogenphosphate Metabolite chebi:43474
acetyl-CoA Metabolite chebi:15351
NADH Metabolite chebi:16908
NAD(1-) Metabolite chebi:57540
Oxidised ferredoxin Metabolite chebi:17908
Reduced ferredoxin Metabolite chebi:17513
acetyl-phosphate Metabolite chebi:15350
MetV Protein uniprot:H6LBX8
RnfG Protein uniprot:H6LC30
FdhF1 Protein uniprot:H6LB59
RnfC Protein uniprot:H6LC32
Fhs1 Protein uniprot:H6LBX4 Formate--tetrahydrofolate ligase
RnfC2 Protein uniprot:H6LBX7
RnfD Protein uniprot:H6LC31
MetF Protein uniprot:H6LBX9
HycB2 Protein uniprot:H6LB62
RnfA Protein uniprot:H6LC28
RnfB Protein uniprot:H6LC27
HycB1 Protein uniprot:H6LB60
RnfE Protein uniprot:H6LC29
HydD Protein uniprot:H6LFG5
AcsA Protein uniprot:H6LD21 CO dehydrogenase
HydA1 Protein uniprot:H6LFG3
HycB3 Protein uniprot:H6LB64
AtpE Protein uniprot:Q9RMB5 Subunit c
HydA2 Protein uniprot:H6LB65
HydB Protein uniprot:H6LFG4
HydC Protein uniprot:H6LFG7
FdhF2 Protein uniprot:H6LB61
AtpB Protein uniprot:Q9RMB6 Subunit a
AtpH Protein uniprot:Q9RMB3 Subunit delta
AtpF Protein uniprot:Q9RMB4 Subunit b
AtpD Protein uniprot:P50002 Subunit beta
AtpC Protein uniprot:P50009 Subunit epsilon
AtpG Protein uniprot:P50005 Subunit gamma
AtpA Protein uniprot:P50000 Subunit alpha
FolD Protein uniprot:H6LBX6
FchA Protein uniprot:H6LBX5 Methenyl-THF cyclohydrolase
AcsE Protein uniprot:H6LD20 Methyl-transferase
AcsD Protein uniprot:H6LD18 Small subunit
AcsC Protein uniprot:H6LD19 Large subunit
AcsB1 Protein uniprot:H6LD23 Acetyl-CoA synthase
Pta Protein uniprot:H6LJY6
AckA Protein uniprot:H6LBE7 acetate kinase

References

  1. Pathways and Bioenergetics of Anaerobic Carbon Monoxide Fermentation. Diender M, Stams AJM, Sousa DZ. Front Microbiol. 2015 Nov 19;6:1275. PubMed Europe PMC Scholia