ATM signaling pathway (WP3221)

Bos taurus

Ataxia-telangiectasia (A-T) is a highly pleiotropic, autosomal recessive disease that leads to multisystem defects and has an intricate cellular phenotype, all linked to the functional inactivation of a single gene. Extensive research on the phenotype and the recent discovery and cloning of the responsible gene point to a defect as a central biochemical locus which links several signal transduction pathways that operate under stress as well as in normal physiological conditions. Ataxia is the first symptom in all patients and is predominantly truncal, first manifested in swaying of the head and trunk on standing and even sitting. Truncal ataxia precedes appendicular cerebellar disease. In the first years of life, certain manifestations are present such as dysarthria, muscular hypotonia, the slow initiation and performance of all voluntary movements, characteristic hypotonic facies and postures, and drooling. Dyssynergia and intention tremor of the upper extremities become a major feature after the fifth year of life. The tendon reflexes are diminished or lost, but may be normal or even hyperactive in the early stages. All these observations show a clear ataxia of cerebellar type, initially of station and gait, and later of intention. Early observations of brains from patients with A-T showed neurodegenerative changes, particularly in the Purkinje and granular cells of the cerebellum. Neuronal degeneration is also present in the brainstem, and dentate and olivary nuclei atrophy. Neuronal loss occurs in the substantial nigra and oculomotor nuclei, dorsal root ganglia, and degenerative changes are evident in spinal motor neurons, and dorsal root and sympathetic motor neurons. Moreover, multiple abnormalities in Purkinje cell development have been observed in an Atm-deficient mouse model. Misplaced Purkinje cells have been observed in both the granular and molecular cell layers. In addition, Purkinje cell dendrites tend to grow laterally instead of extending towards the surface of the cerebellum. ATM (for Ataxia-telangiectasia mutated) has been located by restriction-fragment length polymorphism in the chromosome 11, location: 108,093,211-108,239,829. Interestingly, the site of ATM is the same or adjacent to the region occupied by CD3 (Antigen, Delta subunit), THY1 (T-Cell antigen), and NCAM (Cell Adhesion Molecule, Neural, 1) genes, all of which are members of the immunoglobulin-gene superfamily and consequently may be subject to the same defect that afflicts the T-cell receptor and immunoglobulin molecules in A-T. The ATM gene presents an open reading frame (ORF) of 9,165 kb cDNA and is constituted by 66 exons spread over 150 kb of genomic DNA which has a transcript of 12 kb. The ORF of this transcript predicts a 370-kDa protein composed of 3056 amino acids. Over 300 mutations have been found in A-T patients, distributed across the full length (150 kb of genomic DNA) of the ATM gene. Sequence homology indicates that the atm gene product falls into a family of proteins that are related to the catalytic subunit of phosphatidylinositol 3-kinase (PI 3-kinase). This family includes TEL1, MEC1, TOR1, and TOR2 of the budding yeast Saccharomyces cerevisiae, RAD3 of the fission yeast Schizosaccharomyces pombe, and MEI-41 of Drosophila melanogaster. The mammalian family member most closely related to ATM is the ATR/FRP1 protein and, like its yeast homologs, it mediates cellular responses to unreplicated or damaged DNA. In humans the PI 3-kinase family includes the catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs) and FRAP. These sequence homologies appear to reflect functional homology because many of the PI 3-kinase family members are involved in DNA repair, recombination and cell cycle control. Despite the resemblance to lipid kinases, members of this family, including ATM, possess a serine/threonine protein kinase activity, which is wortmannin sensitive. ATM phosphoprotein is ubiquitously expressed and predominantly found in nuclei of proliferating cells, but subcellular fractionation and immunofluorescence revealed that 10-20% of the protein is present in cytoplasmic vesicles, including peroxisomes and endosomes and a prominent cytoplasmic fraction in mouse oocytes. ATM is endosome-bound in mouse neurons, suggesting molecular sorting of the protein occurs in the cytoplasm. In Purkinje cells, distribution of ATM protein is primarily in cytoplasm, and this may be related to the differentiation state of the cells. ATM mRNA is present in all human and mouse tissues. In situ hybridization shows that ATM mRNA is expressed throughout the whole mouse embryo. Furthermore, ATM has been associated with beta-adaptin in lymphoblast vesicles indicating that it may play a role in intracellular vesicle and/or protein transport mechanisms. No obvious nuclear localization signals have been detected in ATM. Neither an ectopically expressed N-terminal fragment of the protein nor a C-terminal fragment is capable of entering the nucleus.

Authors

Martina Summer-Kutmon , Alex Pico , Egon Willighagen , and Eric Weitz

Activity

last edited

Discuss this pathway

Check for ongoing discussions or start your own.

Cited In

Are you planning to include this pathway in your next publication? See How to Cite and add a link here to your paper once it's online.

Organisms

Bos taurus

Communities

Annotations

Pathway Ontology

altered apoptotic cell death pathway aging pathway altered DNA repair pathway ataxia telangiectasia-mutated (ATM) signaling pathway

Participants

Label Type Compact URI Comment
CDC25A GeneProduct ensembl:ENSBTAG00000009586 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000164045
CCNB1 GeneProduct ensembl:ENSBTAG00000014239 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:891
GADD45A GeneProduct ensembl:ENSBTAG00000013860 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:1647
CREB1 GeneProduct ensembl:ENSBTAG00000005474 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:1385
CDKN1A GeneProduct ensembl:ENSBTAG00000008353 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000124762
TP73 GeneProduct ensembl:ENSBTAG00000005812 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000078900
CDC25C GeneProduct ensembl:ENSBTAG00000005293 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000158402
CDK1 GeneProduct ensembl:ENSBTAG00000010109 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000170312
ATM GeneProduct ensembl:ENSBTAG00000003111 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000149311
RAD9A GeneProduct ensembl:ENSBTAG00000012141 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000172613
PIDD1 GeneProduct ensembl:ENSBTAG00000019634 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000177595
RAD51 GeneProduct ensembl:ENSBTAG00000002918 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000051180
CDK1 GeneProduct ensembl:ENSBTAG00000010109 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:983
RIPK1 GeneProduct ensembl:ENSBTAG00000006378 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:Q13546
CCNE1 GeneProduct ensembl:ENSBTAG00000004735 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:F6KX26
ABL1 GeneProduct ensembl:ENSBTAG00000017976 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000097007
MAPK9 GeneProduct ensembl:ENSBTAG00000004709 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000050748
MDM4 GeneProduct ensembl:ENSBTAG00000006255 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:O15151
TP53 GeneProduct ensembl:ENSBTAG00000001069 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000141510
CRADD GeneProduct ensembl:ENSBTAG00000005107 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:P78560
CASP2 GeneProduct ensembl:ENSBTAG00000018159 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:P42575
ATF2 GeneProduct ensembl:ENSBTAG00000002295 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000115966
JUN GeneProduct ensembl:ENSBTAG00000004037 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000177606
TP53BP1 GeneProduct ensembl:ENSBTAG00000021304 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000067369
CHEK2 Protein ensembl:ENSBTAG00000004956 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:O96017
SMC1A Protein ensembl:ENSBTAG00000017761 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:Q14683
AP3B2 Protein ensembl:ENSBTAG00000008495 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:Q13367
H2AFX Protein ensembl:ENSBTAG00000038047 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:P16104
TLK1 Protein ensembl:ENSBTAG00000006918 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:Q9UKI8
BIKBA Protein ensembl:ENSBTAG00000016683 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:P25963
CHEK1 Protein ensembl:ENSBTAG00000017582 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:O14757
BRCA1 Protein ensembl:ENSBTAG00000022520 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:P38398
FANCD2 Protein ensembl:ENSBTAG00000010077 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:Q9BXW9
MDM2 Protein ensembl:ENSBTAG00000010422 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:Q00987
CDK2 Protein ensembl:ENSBTAG00000004021 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:P24941
MDC1 Protein ensembl:ENSBTAG00000025526 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:Q14676
BID2 Protein ensembl:ENSBTAG00000013988 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:P55957
MRE11A Protein ensembl:ENSBTAG00000008925 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:P49959
NBN Protein ensembl:ENSBTAG00000013225 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:O60934
RAD50 Protein ensembl:ENSBTAG00000011252 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:Q92878

References

  1. Regulation of cell cycle by cdc2 kinase in mammalian cells. Yasuda H. Seikagaku. 1992 Jan;64(1):1–13. PubMed Europe PMC Scholia
  2. Isolation of the human cdk2 gene that encodes the cyclin A- and adenovirus E1A-associated p33 kinase. Tsai LH, Harlow E, Meyerson M. Nature. 1991 Sep 12;353(6340):174–7. PubMed Europe PMC Scholia
  3. Assignment of the human gene for CREB1 to chromosome 2q32.3-q34. Taylor AK, Klisak I, Mohandas T, Sparkes RS, Li C, Gaynor R, et al. Genomics. 1990 Jul;7(3):416–21. PubMed Europe PMC Scholia
  4. Cell cycle control in eukaryotes: molecular mechanisms of cdc2 activation. Draetta G. Trends Biochem Sci. 1990 Oct;15(10):378–83. PubMed Europe PMC Scholia
  5. Cell cycle checkpoints and repair of ionizing radiation damage. Liu VF, Boubnov NV, Weaver DT. Stem Cells. 1995 May;13 Suppl 1:117–28. PubMed Europe PMC Scholia
  6. Apoptosis, cancer and the p53 tumour suppressor gene. Lee JM, Bernstein A. Cancer Metastasis Rev. 1995 Jun;14(2):149–61. PubMed Europe PMC Scholia
  7. DNA damage responses: p53 induction, cell cycle perturbations, and apoptosis. Canman CE, Chen CY, Lee MH, Kastan MB. Cold Spring Harb Symp Quant Biol. 1994;59:277–86. PubMed Europe PMC Scholia
  8. P53, cell cycle control and apoptosis: implications for cancer. Kastan MB, Canman CE, Leonard CJ. Cancer Metastasis Rev. 1995 Mar;14(1):3–15. PubMed Europe PMC Scholia
  9. The role of p53 in cell-cycle control and apoptosis: implications for cancer. Leonard CJ, Canman CE, Kastan MB. Important Adv Oncol. 1995;33–42. PubMed Europe PMC Scholia
  10. Apoptosis and the cell cycle. Chiarugi V, Magnelli L, Cinelli M, Basi G. Cell Mol Biol Res. 1994;40(7–8):603–12. PubMed Europe PMC Scholia
  11. Relationship of p53 to the control of apoptotic cell death. Oren M. Semin Cancer Biol. 1994 Jun;5(3):221–7. PubMed Europe PMC Scholia
  12. The characterization of human cdc2 kinase and CDK2. Yasuda H, Kamijo M, Ohba Y. Yakugaku Zasshi. 1993 Dec;113(12):829–46. PubMed Europe PMC Scholia
  13. p53: DNA damage, DNA repair, and apoptosis. Götz C, Montenarh M. Rev Physiol Biochem Pharmacol. 1996;127:65–95. PubMed Europe PMC Scholia
  14. Cellular responses to DNA damage: cell-cycle checkpoints, apoptosis and the roles of p53 and ATM. Enoch T, Norbury C. Trends Biochem Sci. 1995 Oct;20(10):426–30. PubMed Europe PMC Scholia
  15. Apoptosis: molecular regulation of cell death. Hale AJ, Smith CA, Sutherland LC, Stoneman VE, Longthorne VL, Culhane AC, et al. Eur J Biochem. 1996 Feb 15;236(1):1–26. PubMed Europe PMC Scholia
  16. Structure and evolution of the human IKBA gene. Ito CY, Adey N, Bautch VL, Baldwin AS Jr. Genomics. 1995 Sep 20;29(2):490–5. PubMed Europe PMC Scholia
  17. Ataxia telangiectasia: cell signaling, cell death and the cell cycle. Heintz N. Curr Opin Neurol. 1996 Apr;9(2):137–40. PubMed Europe PMC Scholia
  18. Novel form of p21(WAF1/CIP1/SDI1) protein in phorbol ester-induced G2/M arrest. Tchou WW, Rom WN, Tchou-Wong KM. J Biol Chem. 1996 Nov 22;271(47):29556–60. PubMed Europe PMC Scholia
  19. Cyclins and cyclin-dependent kinases: a biochemical view. Pines J. Biochem J. 1995 Jun 15;308 ( Pt 3)(Pt 3):697–711. PubMed Europe PMC Scholia
  20. RAIDD is a new “death” adaptor molecule. Duan H, Dixit VM. Nature. 1997 Jan 2;385(6611):86–9. PubMed Europe PMC Scholia
  21. Ataxia-telangiectasia: structural diversity of untranslated sequences suggests complex post-transcriptional regulation of ATM gene expression. Savitsky K, Platzer M, Uziel T, Gilad S, Sartiel A, Rosenthal A, et al. Nucleic Acids Res. 1997 May 1;25(9):1678–84. PubMed Europe PMC Scholia
  22. Activation of caspase-2 in apoptosis. Li H, Bergeron L, Cryns V, Pasternack MS, Zhu H, Shi L, et al. J Biol Chem. 1997 Aug 22;272(34):21010–7. PubMed Europe PMC Scholia
  23. Ataxia-telangiectasia: is ATM a sensor of oxidative damage and stress? Rotman G, Shiloh Y. Bioessays. 1997 Oct;19(10):911–7. PubMed Europe PMC Scholia
  24. Effects of p21(Cip1/Waf1) at both the G1/S and the G2/M cell cycle transitions: pRb is a critical determinant in blocking DNA replication and in preventing endoreduplication. Niculescu AB 3rd, Chen X, Smeets M, Hengst L, Prives C, Reed SI. Mol Cell Biol. 1998 Jan;18(1):629–43. PubMed Europe PMC Scholia
  25. Mammalian Rad51 protein: a RecA homologue with pleiotropic functions. Vispé S, Defais M. Biochimie. 1997 Oct;79(9–10):587–92. PubMed Europe PMC Scholia
  26. The role of the stress-activated protein kinase (SAPK/JNK) signaling pathway in radiation-induced apoptosis. Verheij M, Ruiter GA, Zerp SF, van Blitterswijk WJ, Fuks Z, Haimovitz-Friedman A, et al. Radiother Oncol. 1998 Jun;47(3):225–32. PubMed Europe PMC Scholia
  27. ATM: from gene to function. Rotman G, Shiloh Y. Hum Mol Genet. 1998;7(10):1555–63. PubMed Europe PMC Scholia
  28. Involvement of p21 in the PKC-induced regulation of the G2/M cell cycle transition. Barboule N, Lafon C, Chadebech P, Vidal S, Valette A. FEBS Lett. 1999 Feb 5;444(1):32–7. PubMed Europe PMC Scholia
  29. Tlk, a novel evolutionarily conserved murine serine threonine kinase, encodes multiple testis transcripts. Shalom S, Don J. Mol Reprod Dev. 1999 Apr;52(4):392–405. PubMed Europe PMC Scholia
  30. Mutations in the IkBa gene in Hodgkin’s disease suggest a tumour suppressor role for IkappaBalpha. Cabannes E, Khan G, Aillet F, Jarrett RF, Hay RT. Oncogene. 1999 May 20;18(20):3063–70. PubMed Europe PMC Scholia
  31. p21Waf1/Cip1/Sdi1 induces permanent growth arrest with markers of replicative senescence in human tumor cells lacking functional p53. Fang L, Igarashi M, Leung J, Sugrue MM, Lee SW, Aaronson SA. Oncogene. 1999 May 6;18(18):2789–97. PubMed Europe PMC Scholia
  32. Rad51/RecA protein families and the associated proteins in eukaryotes. Shinohara A, Ogawa T. Mutat Res. 1999 Sep 13;435(1):13–21. PubMed Europe PMC Scholia
  33. Mechanisms and regulation of the degradation of cyclin B. Hershko A. Philos Trans R Soc Lond B Biol Sci. 1999 Sep 29;354(1389):1571–5; discussion 1575-6. PubMed Europe PMC Scholia
  34. Role of the ATM gene in genetic predisposition to cancer. Bay JO, Uhrhammer N, Stoppa-Lyonnet D, Hall J. Bull Cancer. 2000 Jan;87(1):29–34. PubMed Europe PMC Scholia
  35. c-Abl: activation and nuclear targets. Shaul Y. Cell Death Differ. 2000 Jan;7(1):10–6. PubMed Europe PMC Scholia
  36. P53, apoptosis, and breast cancer. Barnes DM, Camplejohn RS. J Mammary Gland Biol Neoplasia. 1996 Apr;1(2):163–75. PubMed Europe PMC Scholia
  37. Factors controlling cyclin B expression. Ito M. Plant Mol Biol. 2000 Aug;43(5–6):677–90. PubMed Europe PMC Scholia
  38. p73 in apoptosis. Stiewe T, Pützer BM. Apoptosis. 2001 Dec;6(6):447–52. PubMed Europe PMC Scholia
  39. ATM: genome stability, neuronal development, and cancer cross paths. Shiloh Y, Kastan MB. Adv Cancer Res. 2001;83:209–54. PubMed Europe PMC Scholia
  40. Caspase-2 induces apoptosis by releasing proapoptotic proteins from mitochondria. Guo Y, Srinivasula SM, Druilhe A, Fernandes-Alnemri T, Alnemri ES. J Biol Chem. 2002 Apr 19;277(16):13430–7. PubMed Europe PMC Scholia
  41. Role of p73 in malignancy: tumor suppressor or oncogene? Stiewe T, Pützer BM. Cell Death Differ. 2002 Mar;9(3):237–45. PubMed Europe PMC Scholia
  42. From Cdc2 to Cdk1: when did the cell cycle kinase join its cyclin partner? Dorée M, Hunt T. J Cell Sci. 2002 Jun 15;115(Pt 12):2461–4. PubMed Europe PMC Scholia
  43. Gadd45a: an elusive yet attractive candidate gene in pancreatic cancer. Hildesheim J, Fornace AJ Jr. Clin Cancer Res. 2002 Aug;8(8):2475–9. PubMed Europe PMC Scholia
  44. The roles of Bid. Esposti MD. Apoptosis. 2002 Oct;7(5):433–40. PubMed Europe PMC Scholia
  45. Two for two: Cdk2 and its role in centrosome doubling. Hinchcliffe EH, Sluder G. Oncogene. 2002 Sep 9;21(40):6154–60. PubMed Europe PMC Scholia
  46. Genomic instability, centrosome amplification, cell cycle checkpoints and Gadd45a. Hollander MC, Fornace AJ Jr. Oncogene. 2002 Sep 9;21(40):6228–33. PubMed Europe PMC Scholia
  47. Caspase-2 redux. Troy CM, Shelanski ML. Cell Death Differ. 2003 Jan;10(1):101–7. PubMed Europe PMC Scholia
  48. Human Tousled like kinases are targeted by an ATM- and Chk1-dependent DNA damage checkpoint. Groth A, Lukas J, Nigg EA, Silljé HHW, Wernstedt C, Bartek J, et al. EMBO J. 2003 Apr 1;22(7):1676–87. PubMed Europe PMC Scholia
  49. Cdk2 dethroned as master of S phase entry. Hinds PW. Cancer Cell. 2003 Apr;3(4):305–7. PubMed Europe PMC Scholia
  50. Focusing on foci: H2AX and the recruitment of DNA-damage response factors. Fernandez-Capetillo O, Celeste A, Nussenzweig A. Cell Cycle. 2003;2(5):426–7. PubMed Europe PMC Scholia
  51. Cdc25A regulation: to destroy or not to destroy--is that the only question? Neely KE, Piwnica-Worms H. Cell Cycle. 2003;2(5):455–7. PubMed Europe PMC Scholia
  52. Cyclin B1 and CDK1: nuclear localization and upstream regulators. Porter LA, Donoghue DJ. Prog Cell Cycle Res. 2003;5:335–47. PubMed Europe PMC Scholia
  53. Homologous recombination and cell cycle checkpoints: Rad51 in tumour progression and therapy resistance. Henning W, Stürzbecher HW. Toxicology. 2003 Nov 15;193(1–2):91–109. PubMed Europe PMC Scholia
  54. Cyclins and breast cancer. Sutherland RL, Musgrove EA. J Mammary Gland Biol Neoplasia. 2004 Jan;9(1):95–104. PubMed Europe PMC Scholia
  55. Fanconi anemia proteins and the s phase checkpoint. Pichierri P, Rosselli F. Cell Cycle. 2004 Jun;3(6):698–700. PubMed Europe PMC Scholia
  56. Cyclin E. Möröy T, Geisen C. Int J Biochem Cell Biol. 2004 Aug;36(8):1424–39. PubMed Europe PMC Scholia
  57. Dynamics in the p53-Mdm2 ubiquitination pathway. Brooks CL, Gu W. Cell Cycle. 2004 Jul;3(7):895–9. PubMed Europe PMC Scholia
  58. p73 and p63: why do we still need them? Blandino G, Dobbelstein M. Cell Cycle. 2004 Jul;3(7):886–94. PubMed Europe PMC Scholia
  59. Mdmx and Mdm2: brothers in arms? Marine JC, Jochemsen AG. Cell Cycle. 2004 Jul;3(7):900–4. PubMed Europe PMC Scholia
  60. Chk1 versus Cdc25: chking one’s levels of cellular proliferation. Lam MH, Rosen JM. Cell Cycle. 2004 Nov;3(11):1355–7. PubMed Europe PMC Scholia
  61. Physiological roles of SAPK/JNK signaling pathway. Nishina H, Wada T, Katada T. J Biochem. 2004 Aug;136(2):123–6. PubMed Europe PMC Scholia
  62. Gadd45a, a p53- and BRCA1-regulated stress protein, in cellular response to DNA damage. Zhan Q. Mutat Res. 2005 Jan 6;569(1–2):133–43. PubMed Europe PMC Scholia
  63. RAD51, genomic stability, and tumorigenesis. Richardson C. Cancer Lett. 2005 Feb 10;218(2):127–39. PubMed Europe PMC Scholia
  64. Role of c-Abl in the DNA damage stress response. Shaul Y, Ben-Yehoyada M. Cell Res. 2005 Jan;15(1):33–5. PubMed Europe PMC Scholia
  65. The RAD51 gene family, genetic instability and cancer. Thacker J. Cancer Lett. 2005 Mar 10;219(2):125–35. PubMed Europe PMC Scholia
  66. C-Abl as a modulator of p53. Levav-Cohen Y, Goldberg Z, Zuckerman V, Grossman T, Haupt S, Haupt Y. Biochem Biophys Res Commun. 2005 Jun 10;331(3):737–49. PubMed Europe PMC Scholia
  67. Caspase-2 function in response to DNA damage. Zhivotovsky B, Orrenius S. Biochem Biophys Res Commun. 2005 Jun 10;331(3):859–67. PubMed Europe PMC Scholia
  68. Role of recA/RAD51 family proteins in mammals. Kawabata M, Kawabata T, Nishibori M. Acta Med Okayama. 2005 Feb;59(1):1–9. PubMed Europe PMC Scholia
  69. RAIDD is required for apoptosis of PC12 cells and sympathetic neurons induced by trophic factor withdrawal. Wang Q, Maniati M, Jabado O, Pavlaki M, Troy CM, Greene LA, et al. Cell Death Differ. 2006 Jan;13(1):75–83. PubMed Europe PMC Scholia
  70. ATM signaling and 53BP1. Zgheib O, Huyen Y, DiTullio RA Jr, Snyder A, Venere M, Stavridi ES, et al. Radiother Oncol. 2005 Aug;76(2):119–22. PubMed Europe PMC Scholia
  71. ATM-mediated phosphorylations inhibit Mdmx/Mdm2 stabilization by HAUSP in favor of p53 activation. Meulmeester E, Pereg Y, Shiloh Y, Jochemsen AG. Cell Cycle. 2005 Sep;4(9):1166–70. PubMed Europe PMC Scholia
  72. Targeting chk2 kinase: molecular interaction maps and therapeutic rationale. Pommier Y, Sordet O, Rao VA, Zhang H, Kohn KW. Curr Pharm Des. 2005;11(22):2855–72. PubMed Europe PMC Scholia
  73. Fanconi anemia: genes and function(s) revisited. Papadopoulo D, Moustacchi E. Med Sci (Paris). 2005;21(8–9):730–6. PubMed Europe PMC Scholia
  74. Apoptosis caused by p53-induced protein with death domain (PIDD) depends on the death adapter protein RAIDD. Berube C, Boucher LM, Ma W, Wakeham A, Salmena L, Hakem R, et al. Proc Natl Acad Sci U S A. 2005 Oct 4;102(40):14314–20. PubMed Europe PMC Scholia
  75. Cell cycle sibling rivalry: Cdc2 vs. Cdk2. Kaldis P, Aleem E. Cell Cycle. 2005 Nov;4(11):1491–4. PubMed Europe PMC Scholia
  76. DNA damage checkpoints in mammals. Niida H, Nakanishi M. Mutagenesis. 2006 Jan;21(1):3–9. PubMed Europe PMC Scholia
  77. PIDD: a switch hitter. Wu ZH, Mabb A, Miyamoto S. Cell. 2005 Dec 16;123(6):980–2. PubMed Europe PMC Scholia
  78. PIDD mediates NF-kappaB activation in response to DNA damage. Janssens S, Tinel A, Lippens S, Tschopp J. Cell. 2005 Dec 16;123(6):1079–92. PubMed Europe PMC Scholia
  79. Cyclin B1 and other cyclins as tumor antigens in immunosurveillance and immunotherapy of cancer. Egloff AM, Vella LA, Finn OJ. Cancer Res. 2006 Jan 1;66(1):6–9. PubMed Europe PMC Scholia
  80. Characterisation of the promoter region of the human DNA-repair gene Rad51. Hasselbach L, Haase S, Fischer D, Kolberg HC, Stürzbecher HW. Eur J Gynaecol Oncol. 2005;26(6):589–98. PubMed Europe PMC Scholia
  81. BID as a double agent in cell life and death. Gross A. Cell Cycle. 2006 Mar;5(6):582–4. PubMed Europe PMC Scholia
  82. Cdc25: mechanisms of checkpoint inhibition and recovery. Karlsson-Rosenthal C, Millar JBA. Trends Cell Biol. 2006 Jun;16(6):285–92. PubMed Europe PMC Scholia
  83. Checkpoint and coordinated cellular responses to DNA damage. Yang XH, Zou L. Results Probl Cell Differ. 2006;42:65–92. PubMed Europe PMC Scholia
  84. The CHEK2 gene and inherited breast cancer susceptibility. Nevanlinna H, Bartek J. Oncogene. 2006 Sep 25;25(43):5912–9. PubMed Europe PMC Scholia
  85. PIDD: database for Protein Inter-atomic Distance Distributions. Wu D, Cui F, Jernigan R, Wu Z. Nucleic Acids Res. 2007 Jan;35(Database issue):D202-7. PubMed Europe PMC Scholia
  86. MDMX: from bench to bedside. Marine JCW, Dyer MA, Jochemsen AG. J Cell Sci. 2007 Feb 1;120(Pt 3):371–8. PubMed Europe PMC Scholia
  87. RIP1, a kinase on the crossroads of a cell’s decision to live or die. Festjens N, Vanden Berghe T, Cornelis S, Vandenabeele P. Cell Death Differ. 2007 Mar;14(3):400–10. PubMed Europe PMC Scholia
  88. “... The end of the beginning”: cdk1 thresholds and exit from mitosis. Wolf F, Sigl R, Geley S. Cell Cycle. 2007 Jun 15;6(12):1408–11. PubMed Europe PMC Scholia
  89. Radiation to control transgene expression in tumors. Marignol L, Coffey M, Hollywood D, Lawler M. Cancer Biol Ther. 2007 Jul;6(7):1005–12. PubMed Europe PMC Scholia
  90. Cytometry of ATM activation and histone H2AX phosphorylation to estimate extent of DNA damage induced by exogenous agents. Tanaka T, Huang X, Halicka HD, Zhao H, Traganos F, Albino AP, et al. Cytometry A. 2007 Sep;71(9):648–61. PubMed Europe PMC Scholia
  91. Overexpressed TP73 induces apoptosis in medulloblastoma. Castellino RC, De Bortoli M, Lin LL, Skapura DG, Rajan JA, Adesina AM, et al. BMC Cancer. 2007 Jul 12;7:127. PubMed Europe PMC Scholia
  92. ATF2 on the double - activating transcription factor and DNA damage response protein. Bhoumik A, Lopez-Bergami P, Ronai Z. Pigment Cell Res. 2007 Dec;20(6):498–506. PubMed Europe PMC Scholia
  93. The Fanconi anemia pathway and ubiquitin. Jacquemont C, Taniguchi T. BMC Biochem. 2007 Nov 22;8 Suppl 1(Suppl 1):S10. PubMed Europe PMC Scholia
  94. Phosphatases, DNA damage checkpoints and checkpoint deactivation. Heideker J, Lis ET, Romesberg FE. Cell Cycle. 2007 Dec 15;6(24):3058–64. PubMed Europe PMC Scholia
  95. The consequences of Rad51 overexpression for normal and tumor cells. Klein HL. DNA Repair (Amst). 2008 May 3;7(5):686–93. PubMed Europe PMC Scholia
  96. The G2/M transition in eukaryotes. Francis D. SEB Exp Biol Ser. 2008;59:81–98. PubMed Europe PMC Scholia
  97. Expanded roles for Chk1 in genome maintenance. Enders GH. J Biol Chem. 2008 Jun 27;283(26):17749–52. PubMed Europe PMC Scholia
  98. Cdk1, Plks, Auroras, and Neks: the mitotic bodyguards. Salaun P, Rannou Y, Prigent C. Adv Exp Med Biol. 2008;617:41–56. PubMed Europe PMC Scholia
  99. The multiple checkpoint functions of CHK1 and CHK2 in maintenance of genome stability. Chen Y, Poon RYC. Front Biosci. 2008 May 1;13:5016–29. PubMed Europe PMC Scholia
  100. ATF2: a transcription factor that elicits oncogenic or tumor suppressor activities. Bhoumik A, Ronai Z. Cell Cycle. 2008 Aug;7(15):2341–5. PubMed Europe PMC Scholia
  101. Growth arrest and DNA damage-45 alpha (GADD45alpha). Rosemary Siafakas A, Richardson DR. Int J Biochem Cell Biol. 2009 May;41(5):986–9. PubMed Europe PMC Scholia
  102. Role of CHK2 in cancer development. Perona R, Moncho-Amor V, Machado-Pinilla R, Belda-Iniesta C, Sánchez Pérez I. Clin Transl Oncol. 2008 Sep;10(9):538–42. PubMed Europe PMC Scholia
  103. Role of H2AX in DNA damage response and human cancers. Srivastava N, Gochhait S, de Boer P, Bamezai RNK. Mutat Res. 2009;681(2–3):180–8. PubMed Europe PMC Scholia
  104. Tousled homolog, TLK1, binds and phosphorylates Rad9; TLK1 acts as a molecular chaperone in DNA repair. Sunavala-Dossabhoy G, De Benedetti A. DNA Repair (Amst). 2009 Jan 1;8(1):87–102. PubMed Europe PMC Scholia
  105. The enigma of caspase-2: the laymen’s view. Krumschnabel G, Sohm B, Bock F, Manzl C, Villunger A. Cell Death Differ. 2009 Feb;16(2):195–207. PubMed Europe PMC Scholia
  106. Cell cycle control by the CDC25 phosphatases. Aressy B, Ducommun B. Anticancer Agents Med Chem. 2008 Dec;8(8):818–24. PubMed Europe PMC Scholia
  107. CDC25A: a rebel within the CDC25 phosphatases family? Fernandez-Vidal A, Mazars A, Manenti S. Anticancer Agents Med Chem. 2008 Dec;8(8):825–31. PubMed Europe PMC Scholia
  108. RAIDD expression is impaired in multidrug resistant osteosarcoma cell lines. Yang C, Hornicek FJ, Wood KB, Schwab JH, Mankin H, Duan Z. Cancer Chemother Pharmacol. 2009 Aug;64(3):607–14. PubMed Europe PMC Scholia
  109. Cellular senescence: hot or what? Evan GI, d’Adda di Fagagna F. Curr Opin Genet Dev. 2009 Feb;19(1):25–31. PubMed Europe PMC Scholia
  110. Kinases that control the cell cycle in response to DNA damage: Chk1, Chk2, and MK2. Reinhardt HC, Yaffe MB. Curr Opin Cell Biol. 2009 Apr;21(2):245–55. PubMed Europe PMC Scholia
  111. The decision to enter mitosis: feedback and redundancy in the mitotic entry network. Lindqvist A, Rodríguez-Bravo V, Medema RH. J Cell Biol. 2009 Apr 20;185(2):193–202. PubMed Europe PMC Scholia
  112. Regulation of chk1. Tapia-Alveal C, Calonge TM, O’Connell MJ. Cell Div. 2009 Apr 29;4:8. PubMed Europe PMC Scholia
  113. Caspase-2: killer, savior and safeguard--emerging versatile roles for an ill-defined caspase. Krumschnabel G, Manzl C, Villunger A. Oncogene. 2009 Sep 3;28(35):3093–6. PubMed Europe PMC Scholia
  114. Purification, crystallization and preliminary x-ray crystallographic studies of RAIDD Death-Domain (DD). Jang TH, Park HH. Int J Mol Sci. 2009 Jun 3;10(6):2501–9. PubMed Europe PMC Scholia
  115. Aging or tumor: the crosstalk between telomerase and p53. Zhang XF, Tang WR, Luo Y. Yi Chuan. 2009 May;31(5):451–6. PubMed Europe PMC Scholia
  116. Cdk1 participates in BRCA1-dependent S phase checkpoint control in response to DNA damage. Johnson N, Cai D, Kennedy RD, Pathania S, Arora M, Li YC, et al. Mol Cell. 2009 Aug 14;35(3):327–39. PubMed Europe PMC Scholia
  117. How the fanconi anemia pathway guards the genome. Moldovan GL, D’Andrea AD. Annu Rev Genet. 2009;43:223–49. PubMed Europe PMC Scholia
  118. H2AX: functional roles and potential applications. Dickey JS, Redon CE, Nakamura AJ, Baird BJ, Sedelnikova OA, Bonner WM. Chromosoma. 2009 Dec;118(6):683–92. PubMed Europe PMC Scholia
  119. Caspase 2 in apoptosis, the DNA damage response and tumour suppression: enigma no more? Kumar S. Nat Rev Cancer. 2009 Dec;9(12):897–903. PubMed Europe PMC Scholia
  120. HMGNs, DNA repair and cancer. Gerlitz G. Biochim Biophys Acta. 2010;1799(1–2):80–5. PubMed Europe PMC Scholia
  121. Dealing with DNA damage: relationships between checkpoint and repair pathways. Warmerdam DO, Kanaar R. Mutat Res. 2010;704(1–3):2–11. PubMed Europe PMC Scholia
  122. Targeting the checkpoint kinase Chk1 in cancer therapy. Merry C, Fu K, Wang J, Yeh IJ, Zhang Y. Cell Cycle. 2010 Jan 15;9(2):279–83. PubMed Europe PMC Scholia
  123. The unpredictable caspase-2: what can it do? Vakifahmetoglu-Norberg H, Zhivotovsky B. Trends Cell Biol. 2010 Mar;20(3):150–9. PubMed Europe PMC Scholia
  124. The role of caspase-2 in stress-induced apoptosis. Bouchier-Hayes L. J Cell Mol Med. 2010 Jun;14(6A):1212–24. PubMed Europe PMC Scholia
  125. MDC1: The art of keeping things in focus. Jungmichel S, Stucki M. Chromosoma. 2010 Aug;119(4):337–49. PubMed Europe PMC Scholia
  126. Rad9A is required for G2 decatenation checkpoint and to prevent endoreduplication in response to topoisomerase II inhibition. Greer Card DA, Sierant ML, Davey S. J Biol Chem. 2010 May 14;285(20):15653–61. PubMed Europe PMC Scholia
  127. The role of the kinases RIP1 and RIP3 in TNF-induced necrosis. Vandenabeele P, Declercq W, Van Herreweghe F, Vanden Berghe T. Sci Signal. 2010 Mar 30;3(115):re4. PubMed Europe PMC Scholia
  128. Cdk2: a key regulator of the senescence control function of Myc. Hydbring P, Larsson LG. Aging (Albany NY). 2010 Apr;2(4):244–50. PubMed Europe PMC Scholia
  129. An overview of Cdk1-controlled targets and processes. Enserink JM, Kolodner RD. Cell Div. 2010 May 13;5:11. PubMed Europe PMC Scholia
  130. Focus on histone variant H2AX: to be or not to be. Yuan J, Adamski R, Chen J. FEBS Lett. 2010 Sep 10;584(17):3717–24. PubMed Europe PMC Scholia
  131. Mechanisms of ATR-mediated checkpoint signalling. Smits VAJ, Warmerdam DO, Martin Y, Freire R. Front Biosci (Landmark Ed). 2010 Jun 1;15(3):840–53. PubMed Europe PMC Scholia
  132. The Mdm2-p53 relationship evolves: Mdm2 swings both ways as an oncogene and a tumor suppressor. Manfredi JJ. Genes Dev. 2010 Aug 1;24(15):1580–9. PubMed Europe PMC Scholia
  133. Chk1 suppressed cell death. Meuth M. Cell Div. 2010 Sep 2;5:21. PubMed Europe PMC Scholia
  134. The ATM-Chk2 and ATR-Chk1 pathways in DNA damage signaling and cancer. Smith J, Tho LM, Xu N, Gillespie DA. Adv Cancer Res. 2010;108:73–112. PubMed Europe PMC Scholia
  135. Fanconi anemia and DNA-damage response network. Matsushita N, Kitao H, Ishiai M, Takata M. Tanpakushitsu Kakusan Koso. 2009 Mar;54(4 Suppl):580–5. PubMed Europe PMC Scholia
  136. Nuclear initiated NF-κB signaling: NEMO and ATM take center stage. Miyamoto S. Cell Res. 2011 Jan;21(1):116–30. PubMed Europe PMC Scholia
  137. NF-kappaB in lung cancer, a carcinogenesis mediator and a prevention and therapy target. Chen W, Li Z, Bai L, Lin Y. Front Biosci (Landmark Ed). 2011 Jan 1;16(3):1172–85. PubMed Europe PMC Scholia
  138. The cellular response to DNA damage: a focus on MDC1 and its interacting proteins. Coster G, Goldberg M. Nucleus. 2010;1(2):166–78. PubMed Europe PMC Scholia
  139. Induction and repair of DNA double strand breaks: the increasing spectrum of non-homologous end joining pathways. Mladenov E, Iliakis G. Mutat Res. 2011 Jun 3;711(1–2):61–72. PubMed Europe PMC Scholia
  140. p73 as a pharmaceutical target for cancer therapy. Bisso A, Collavin L, Del Sal G. Curr Pharm Des. 2011;17(6):578–90. PubMed Europe PMC Scholia
  141. Cdc2: a monopotent or pluripotent CDK? Hu X, Moscinski LC. Cell Prolif. 2011 Jun;44(3):205–11. PubMed Europe PMC Scholia
  142. Functions of MDMX in the modulation of the p53-response. Lenos K, Jochemsen AG. J Biomed Biotechnol. 2011;2011:876173. PubMed Europe PMC Scholia
  143. Downstream of human NDR kinases: impacting on c-myc and p21 protein stability to control cell cycle progression. Cornils H, Kohler RS, Hergovich A, Hemmings BA. Cell Cycle. 2011 Jun 15;10(12):1897–904. PubMed Europe PMC Scholia
  144. The role of p21 in regulating mammalian regeneration. Arthur LM, Heber-Katz E. Stem Cell Res Ther. 2011 Jun 29;2(3):30. PubMed Europe PMC Scholia
  145. The role of homologous recombination in radiation-induced double-strand break repair. Jeggo PA, Geuting V, Löbrich M. Radiother Oncol. 2011 Oct;101(1):7–12. PubMed Europe PMC Scholia
  146. RAD51 as a potential biomarker and therapeutic target for pancreatic cancer. Nagathihalli NS, Nagaraju G. Biochim Biophys Acta. 2011 Dec;1816(2):209–18. PubMed Europe PMC Scholia
  147. Targeting p73 in cancer. Maas AM, Bretz AC, Mack E, Stiewe T. Cancer Lett. 2013 May 28;332(2):229–36. PubMed Europe PMC Scholia
  148. Checkpoint control and cancer. Medema RH, Macůrek L. Oncogene. 2012 May 24;31(21):2601–13. PubMed Europe PMC Scholia
  149. RIP1-mediated regulation of lymphocyte survival and death responses. Zhang J, Zhang H, Li J, Rosenberg S, Zhang EC, Zhou X, et al. Immunol Res. 2011 Dec;51(2–3):227–36. PubMed Europe PMC Scholia
  150. Mechanisms of cellular senescence by tumor suppressor p53. Tanaka T. Nihon Rinsho. 2011 Oct;69(10):1891–900. PubMed Europe PMC Scholia
  151. Caspase-2: the orphan caspase. Bouchier-Hayes L, Green DR. Cell Death Differ. 2012 Jan;19(1):51–7. PubMed Europe PMC Scholia
  152. Eukaryotic DNA damage checkpoint activation in response to double-strand breaks. Finn K, Lowndes NF, Grenon M. Cell Mol Life Sci. 2012 May;69(9):1447–73. PubMed Europe PMC Scholia
  153. Translational regulation of the cell cycle: when, where, how and why? Kronja I, Orr-Weaver TL. Philos Trans R Soc Lond B Biol Sci. 2011 Dec 27;366(1584):3638–52. PubMed Europe PMC Scholia
  154. Gadd45 stress sensors in malignancy and leukemia. Liebermann DA, Tront JS, Sha X, Mukherjee K, Mohamed-Hadley A, Hoffman B. Crit Rev Oncog. 2011;16(1–2):129–40. PubMed Europe PMC Scholia
  155. Fanconi anemia. Soulier J. Hematology Am Soc Hematol Educ Program. 2011;2011:492–7. PubMed Europe PMC Scholia
  156. The roles of ATF2 (activating transcription factor 2) in tumorigenesis. Gozdecka M, Breitwieser W. Biochem Soc Trans. 2012 Feb;40(1):230–4. PubMed Europe PMC Scholia
  157. The role of Cdc25A in the regulation of cell proliferation and apoptosis. Shen T, Huang S. Anticancer Agents Med Chem. 2012 Jul;12(6):631–9. PubMed Europe PMC Scholia
  158. The p53 network: cellular and systemic DNA damage responses in aging and cancer. Reinhardt HC, Schumacher B. Trends Genet. 2012 Mar;28(3):128–36. PubMed Europe PMC Scholia
  159. Regulation of p53: a collaboration between Mdm2 and Mdmx. Pei D, Zhang Y, Zheng J. Oncotarget. 2012 Mar;3(3):228–35. PubMed Europe PMC Scholia
  160. NF-κB: where did it come from and why? Gilmore TD, Wolenski FS. Immunol Rev. 2012 Mar;246(1):14–35. PubMed Europe PMC Scholia
  161. NF-κB regulation: lessons from structures. Ghosh G, Wang VYF, Huang DB, Fusco A. Immunol Rev. 2012 Mar;246(1):36–58. PubMed Europe PMC Scholia
  162. DNA damage-dependent NF-κB activation: NEMO turns nuclear signaling inside out. McCool KW, Miyamoto S. Immunol Rev. 2012 Mar;246(1):311–26. PubMed Europe PMC Scholia
  163. Neuronal caspase 2 activity and function requires RAIDD, but not PIDD. Ribe EM, Jean YY, Goldstein RL, Manzl C, Stefanis L, Villunger A, et al. Biochem J. 2012 Jun 15;444(3):591–9. PubMed Europe PMC Scholia
  164. The role of BRCA1 and BRCA2 in prostate cancer. Castro E, Eeles R. Asian J Androl. 2012 May;14(3):409–14. PubMed Europe PMC Scholia
  165. Axis of ageing: telomeres, p53 and mitochondria. Sahin E, DePinho RA. Nat Rev Mol Cell Biol. 2012 May 16;13(6):397–404. PubMed Europe PMC Scholia
  166. H2AX phosphorylation at the sites of DNA double-strand breaks in cultivated mammalian cells and tissues. Firsanov DV, Solovjeva LV, Svetlova MP. Clin Epigenetics. 2011 Aug;2(2):283–97. PubMed Europe PMC Scholia
  167. Recognition, signaling, and repair of DNA double-strand breaks produced by ionizing radiation in mammalian cells: the molecular choreography. Thompson LH. Mutat Res. 2012;751(2):158–246. PubMed Europe PMC Scholia
  168. Oxidative Stress, DNA Damage, and c-Abl Signaling: At the Crossroad in Neurodegenerative Diseases? Gonfloni S, Maiani E, Di Bartolomeo C, Diederich M, Cesareni G. Int J Cell Biol. 2012;2012:683097. PubMed Europe PMC Scholia
  169. DNA damage repair pathways in cancer stem cells. Maugeri-Saccà M, Bartucci M, De Maria R. Mol Cancer Ther. 2012 Aug;11(8):1627–36. PubMed Europe PMC Scholia
  170. PIDD death-domain phosphorylation by ATM controls prodeath versus prosurvival PIDDosome signaling. Ando K, Kernan JL, Liu PH, Sanda T, Logette E, Tschopp J, et al. Mol Cell. 2012 Sep 14;47(5):681–93. PubMed Europe PMC Scholia
  171. New insights into p53 signaling and cancer cell response to DNA damage: implications for cancer therapy. Mirzayans R, Andrais B, Scott A, Murray D. J Biomed Biotechnol. 2012;2012:170325. PubMed Europe PMC Scholia
  172. Janus-faced PIDD: a sensor for DNA damage-induced cell death or survival? McCoy F, Eckard L, Nutt LK. Mol Cell. 2012 Sep 14;47(5):667–8. PubMed Europe PMC Scholia
  173. BRCA1 and DNA damage response. Sedukhina A, Fukuda T, Ohta T. Seikagaku. 2012 Jul;84(7):529–38. PubMed Europe PMC Scholia
  174. MDM2 and MDMX: Alone and together in regulation of p53. Shadfan M, Lopez-Pajares V, Yuan ZM. Transl Cancer Res. 2012 Aug;1(2):88–9. PubMed Europe PMC Scholia
  175. The intersection between DNA damage response and cell death pathways. Nowsheen S, Yang ES. Exp Oncol. 2012 Oct;34(3):243–54. PubMed Europe PMC Scholia
  176. The Regulation of Multiple p53 Stress Responses is Mediated through MDM2. Hu W, Feng Z, Levine AJ. Genes Cancer. 2012 Mar;3(3–4):199–208. PubMed Europe PMC Scholia
  177. Mdm2 and MdmX as Regulators of Gene Expression. Biderman L, Manley JL, Prives C. Genes Cancer. 2012 Mar;3(3–4):264–73. PubMed Europe PMC Scholia
  178. The role of BRCA1 in DNA double-strand repair: past and present. Caestecker KW, Van de Walle GR. Exp Cell Res. 2013 Mar 10;319(5):575–87. PubMed Europe PMC Scholia
  179. Integration of DNA damage and repair with murine double-minute 2 (Mdm2) in tumorigenesis. Lehman JA, Mayo LD. Int J Mol Sci. 2012 Dec 3;13(12):16373–86. PubMed Europe PMC Scholia
  180. Loss of PIDD limits NF-κB activation and cytokine production but not cell survival or transformation after DNA damage. Bock FJ, Krumschnabel G, Manzl C, Peintner L, Tanzer MC, Hermann-Kleiter N, et al. Cell Death Differ. 2013 Apr;20(4):546–57. PubMed Europe PMC Scholia
  181. The role of the DNA damage response kinase ataxia telangiectasia mutated in neuroprotection. Marinoglou K. Yale J Biol Med. 2012 Dec;85(4):469–80. PubMed Europe PMC Scholia
  182. p53 mutations in cancer. Muller PAJ, Vousden KH. Nat Cell Biol. 2013 Jan;15(1):2–8. PubMed Europe PMC Scholia
  183. Senescence regulation by the p53 protein family. Qian Y, Chen X. Methods Mol Biol. 2013;965:37–61. PubMed Europe PMC Scholia
  184. MDM2, MDMX and p53 in oncogenesis and cancer therapy. Wade M, Li YC, Wahl GM. Nat Rev Cancer. 2013 Feb;13(2):83–96. PubMed Europe PMC Scholia
  185. p53-independent roles of MDM2 in NF-κB signaling: implications for cancer therapy, wound healing, and autoimmune diseases. Thomasova D, Mulay SR, Bruns H, Anders HJ. Neoplasia. 2012 Dec;14(12):1097–101. PubMed Europe PMC Scholia
  186. The role of BRCA1 in homologous recombination repair in response to replication stress: significance in tumorigenesis and cancer therapy. Zhang J. Cell Biosci. 2013 Feb 6;3(1):11. PubMed Europe PMC Scholia
  187. Senescence and aging: the critical roles of p53. Rufini A, Tucci P, Celardo I, Melino G. Oncogene. 2013 Oct 24;32(43):5129–43. PubMed Europe PMC Scholia
  188. Recent discoveries in the cycling, growing and aging of the p53 field. McCubrey JA, Demidenko ZN. Aging (Albany NY). 2012 Dec;4(12):887–93. PubMed Europe PMC Scholia
  189. Seventeen years after BRCA1: what is the BRCA mutation status of the breast cancer patients in Africa? - a systematic review. Oluwagbemiga LA, Oluwole A, Kayode AA. Springerplus. 2012 Dec;1(1):83. PubMed Europe PMC Scholia
  190. Reading, writing, and repair: the role of ubiquitin and the ubiquitin-like proteins in DNA damage signaling and repair. Pinder JB, Attwood KM, Dellaire G. Front Genet. 2013 Apr 1;4:45. PubMed Europe PMC Scholia
  191. Knocking down SMC1A inhibits growth and leads to G2/M arrest in human glioma cells. Ma Z, Lin M, Li K, Fu Y, Liu X, Yang D, et al. Int J Clin Exp Pathol. 2013 Apr 15;6(5):862–9. PubMed Europe PMC Scholia
  192. Tumor Protein 53-Induced Nuclear Protein 1 Enhances p53 Function and Represses Tumorigenesis. Shahbazi J, Lock R, Liu T. Front Genet. 2013 May 13;4:80. PubMed Europe PMC Scholia
  193. The repair and signaling responses to DNA double-strand breaks. Goodarzi AA, Jeggo PA. Adv Genet. 2013;82:1–45. PubMed Europe PMC Scholia
  194. Breast cancer genes: beyond BRCA1 and BRCA2. Filippini SE, Vega A. Front Biosci (Landmark Ed). 2013 Jun 1;18(4):1358–72. PubMed Europe PMC Scholia
  195. The DNA damage checkpoint protein RAD9A is essential for male meiosis in the mouse. Vasileva A, Hopkins KM, Wang X, Weisbach MM, Friedman RA, Wolgemuth DJ, et al. J Cell Sci. 2013 Sep 1;126(Pt 17):3927–38. PubMed Europe PMC Scholia
  196. BRCA1 in the DNA damage response and at telomeres. Rosen EM. Front Genet. 2013 Jun 21;4:85. PubMed Europe PMC Scholia
  197. Caspase-2: what do we know today? Aksenova VI, Bylino OV, Zhivotovskiĭ BD, Lavrik IN. Mol Biol (Mosk). 2013;47(2):187–204. PubMed Europe PMC Scholia