Carbon assimilation C4 pathway (WP1493)

Zea mays

C4 carbon fixation is the CO2 fixation mechanism used by the maize plant which harbors a kranz anatomy in its leaves. In maize it is carried out in two types of cells namely the mesophyll cell where Carbonic anhydrase fixes diffused CO2 to HCO3 and the enzyme PEP carboxylase converts HCO3 into oxaloacetic acid. Malate dehydrogenase catalyzes the conversion of oxaloacetic acid into malate in the mesophyll chloroplast. Malate is transported to the bundle sheath cell cytoplasm followed by the bundle sheath chloroplast where it is broken down into pyruvate and the CO2. This CO2 molecule is now fixed into 3-phosphoglycerate molecule by the active Rubisco enzyme. This process is different from the C3-carbon assimilation in rice which occurs only in the bundle sheath cells.

Authors

Pankaj Jaiswal , Alex Pico , Kristina Hanspers , Martina Summer-Kutmon , and Lars Willighagen

Activity

last edited

Discuss this pathway

Check for ongoing discussions or start your own.

Cited In

Are you planning to include this pathway in your next publication? See How to Cite and add a link here to your paper once it's online.

Organisms

Zea mays

Communities

Annotations

Pathway Ontology

carbon fixation pathway

Participants

Label Type Compact URI Comment
PO4 Metabolite chebi:18367
ATP Metabolite chebi:15422
dihydroxy-acetone-phosphate Metabolite chebi:16108
NADPH Metabolite chebi:16474
D-xylulose-5-phosphate Metabolite chebi:16332
3-phosphoglycerate Metabolite chebi:17050
D-glyceraldehyde-3-phosphate Metabolite chebi:29052
ADP Metabolite chebi:16761
D-ribulose-1,5-bisphosphate Metabolite chebi:16710
HCO3 Metabolite chebi:17544
Oxaloacetic acid Metabolite chebi:30744 OAA
CO2 Metabolite chebi:16526
Malate Metabolite chebi:15595
H+ Metabolite chebi:15378
D-sedophetulose-1,7-bisphosphate Metabolite chebi:17969
Pyruvate Metabolite chebi:15361
H2O Metabolite chebi:15377
NADP Metabolite chebi:18009
D-fructose-6-phosphate Metabolite chebi:15946
1,3-diphosphateglycerate Metabolite cas:1981-49-3
L-Glutamate Metabolite chebi:29988
2-Ketoglutaric acid Metabolite chebi:30915 2-oxoglutaric acid
L-Aspartate Metabolite chebi:29993 OAA
Mg2+ Metabolite chebi:18420
AMP Metabolite chebi:16027
Phosphoenolpyruvate Metabolite chebi:18021 PEP
D-ribose-5-phosphate Metabolite chebi:16988
D-sedoheptulose-7-phosphate Metabolite chebi:15721
D-erythrose-4-phosphate Metabolite chebi:16897
PPi Metabolite chebi:29888
D-fructose-1,6-phosphate Metabolite chebi:16905
D-ribulose-5-phosphate Metabolite chebi:17363
fructose 1,6-bisphosphatase GeneProduct eccode:3.1.3.11
Triosephosphate isomerase GeneProduct eccode:5.3.1.1
NADP-malic enzyme GeneProduct eccode:1.1.1.40
phosphoenolpyruvate carboxykinase (ATP) GeneProduct eccode:4.1.1.49 PEPCK
Ribose-5-phosphate isomerase GeneProduct eccode:5.3.1.6
Aspartate aminotransferase GeneProduct eccode:2.6.1.1 ASPTS
Phosphoglycerate kinase GeneProduct eccode:2.7.2.3
Transketolase GeneProduct eccode:2.2.1.1
Active Pyruvate, phosphate dikinase GeneProduct eccode:2.7.9.1 Active PPDK found in light conditions has a phosphorylated Histitine and a hydroxy Threonine residue.
Inactive Pyruvate, phosphate dikinase GeneProduct eccode:2.7.9.1 Inactive PPDK found in dark conditions has a phosphorylated Histitine and a phosphorylated threonine residue.
Carbonic anhydrase GeneProduct eccode:4.2.1.1 CA
Phosphoenol Pyruvate (PEP) Carboxylase GeneProduct eccode:4.1.1.31 PEPCase
Sedoheptulose 1,7-bisphosphatase GeneProduct eccode:3.1.3.37
Aldolase GeneProduct eccode:4.1.2.
NAD(P)-dependent Glyceraldehyde-3-phosphate dehydrogenase GeneProduct eccode:1.2.1.59
fructose-bisphosphate aldolase GeneProduct eccode:4.1.2.13
Malate dehydrogenase (NADP) GeneProduct eccode:1.1.1.82
Ribulose phosphate 3-epimerase GeneProduct eccode:5.1.3.1
Phosphoribulokinase GeneProduct eccode:2.7.1.19 Also called as ribulose 5-phosphate kinase
GRMZM2G414528 GeneProduct :GRMZM2G414528
GRMZM2G121878 GeneProduct :GRMZM2G121878
GRMZM2G094165 GeneProduct :GRMZM2G094165
GRMZM2G348512 GeneProduct :GRMZM2G348512
GRMZM2G109708 GeneProduct :GRMZM2G109708
GRMZM2G359038 GeneProduct :GRMZM2G359038
GRMZM2G174107 GeneProduct :GRMZM2G174107
GRMZM2G127591 GeneProduct :GRMZM2G127591
GRMZM2G305851 GeneProduct :GRMZM2G305851
GRMZM2G129513 GeneProduct :GRMZM2G129513
GRMZM2G469150 GeneProduct :GRMZM2G469150
GRMZM2G002807 GeneProduct :GRMZM2G002807
GRMZM2G007263 GeneProduct :GRMZM2G007263
GRMZM2G092678 GeneProduct :GRMZM2G092678
GRMZM2G083016 GeneProduct :GRMZM2G083016
GRMZM2G011507 GeneProduct :GRMZM2G011507
GRMZM2G097457 GeneProduct :GRMZM2G097457
GRMZM2G013900 GeneProduct :GRMZM2G013900
GRMZM2G001696 GeneProduct :GRMZM2G001696
GRMZM2G146677 GeneProduct :GRMZM2G146677
GRMZM2G071423 GeneProduct :GRMZM2G071423
GRMZM2G138258 GeneProduct :GRMZM2G138258
GRMZM2G077222 GeneProduct :GRMZM2G077222
GRMZM2G162282 GeneProduct :GRMZM2G162282
GRMZM2G162200 GeneProduct :GRMZM2G162200
GRMZM2G039345 GeneProduct :GRMZM2G039345
GRMZM2G113033 GeneProduct :GRMZM2G113033
GRMZM2G098520 GeneProduct :GRMZM2G098520
GRMZM2G085019 GeneProduct :GRMZM2G085019
GRMZM2G122479 GeneProduct :GRMZM2G122479
GRMZM2G051630 GeneProduct :GRMZM2G051630
GRMZM2G134544 GeneProduct :GRMZM2G134544
GRMZM2G042146 GeneProduct :GRMZM2G042146
GRMZM2G030784 GeneProduct :GRMZM2G030784
GRMZM2G018177 GeneProduct :GRMZM2G018177
GRMZM2G337113 GeneProduct :GRMZM2G337113
GRMZM2G039723 GeneProduct :GRMZM2G039723
GRMZM2G155253 GeneProduct :GRMZM2G155253
GRMZM2G046284 GeneProduct :GRMZM2G046284
GRMZM2G066413 GeneProduct :GRMZM2G066413
GRMZM2G104070 GeneProduct :GRMZM2G104070
GRMZM2G166424 GeneProduct :GRMZM2G166424
GRMZM2G026807 GeneProduct :GRMZM2G026807
GRMZM2G178960 GeneProduct :GRMZM2G178960
GRMZM2G026024 GeneProduct :GRMZM2G026024
GRMZM2G162529 GeneProduct :GRMZM2G162529
GRMZM2G033208 GeneProduct :GRMZM2G033208
GRMZM2G306732 GeneProduct :GRMZM2G306732
GRMZM2G095287 GeneProduct :GRMZM2G095287
AC147602.5_FG003 GeneProduct :AC147602.5_FG003
GRMZM2G083841 GeneProduct :GRMZM2G083841

References

  1. Regulation of pyruvate, orthophosphate dikinase by ADP-/Pi-dependent reversible phosphorylation in C3 and C4 plants. Chastain CJ, Chollet R. Plant Physiology and Biochemistry [Internet]. 2003 Jun;41(6–7):523–32. Available from: http://dx.doi.org/10.1016/S0981-9428(03)00065-2 DOI Scholia
  2. Comparative studies on the activity of carboxylases and other enzymes in relation to the new pathway of photosynthetic carbon dioxide fixation in tropical grasses. Slack CR, Hatch MD. Biochem J. 1967 Jun;103(3):660–5. PubMed Europe PMC Scholia
  3. Distribution of enzymes in mesophyll and parenchyma-sheath chloroplasts of maize leaves in relation to the C4-dicarboxylic acid pathway of photosynthesis. Slack CR, Hatch MD, Goodchild DJ. Biochem J. 1969 Sep;114(3):489–98. PubMed Europe PMC Scholia
  4. Site-directed mutagenesis of maize recombinant C4-pyruvate,orthophosphate dikinase at the phosphorylatable target threonine residue. Chastain CJ, Lee ME, Moorman MA, Shameekumar P, Chollet R. FEBS Lett. 1997 Aug 11;413(1):169–73. PubMed Europe PMC Scholia
  5. Further analysis of maize C(4) pyruvate,orthophosphate dikinase phosphorylation by its bifunctional regulatory protein using selective substitutions of the regulatory Thr-456 and catalytic His-458 residues. Chastain CJ, Botschner M, Harrington GE, Thompson BJ, Mills SE, Sarath G, et al. Arch Biochem Biophys. 2000 Mar 1;375(1):165–70. PubMed Europe PMC Scholia
  6. Maize C4 and non-C4 NADP-dependent malic enzymes are encoded by distinct genes derived from a plastid-localized ancestor. Tausta SL, Coyle HM, Rothermel B, Stiefel V, Nelson T. Plant Mol Biol. 2002 Nov;50(4–5):635–52. PubMed Europe PMC Scholia
  7. Functional differentiation of bundle sheath and mesophyll maize chloroplasts determined by comparative proteomics. Majeran W, Cai Y, Sun Q, van Wijk KJ. Plant Cell. 2005 Nov;17(11):3111–40. PubMed Europe PMC Scholia
  8. Consequences of C4 differentiation for chloroplast membrane proteomes in maize mesophyll and bundle sheath cells. Majeran W, Zybailov B, Ytterberg AJ, Dunsmore J, Sun Q, van Wijk KJ. Mol Cell Proteomics. 2008 Sep;7(9):1609–38. PubMed Europe PMC Scholia
  9. Cell-type-specific differentiation of chloroplasts in C4 plants. Majeran W, van Wijk KJ. Trends Plant Sci. 2009 Feb;14(2):100–9. PubMed Europe PMC Scholia
  10. Reconstruction of metabolic pathways, protein expression, and homeostasis machineries across maize bundle sheath and mesophyll chloroplasts: large-scale quantitative proteomics using the first maize genome assembly. Friso G, Majeran W, Huang M, Sun Q, van Wijk KJ. Plant Physiol. 2010 Mar;152(3):1219–50. PubMed Europe PMC Scholia
  11. The developmental dynamics of the maize leaf transcriptome. Li P, Ponnala L, Gandotra N, Wang L, Si Y, Tausta SL, et al. Nat Genet. 2010 Dec;42(12):1060–7. PubMed Europe PMC Scholia
  12. Structural and metabolic transitions of C4 leaf development and differentiation defined by microscopy and quantitative proteomics in maize. Majeran W, Friso G, Ponnala L, Connolly B, Huang M, Reidel E, et al. Plant Cell. 2010 Nov;22(11):3509–42. PubMed Europe PMC Scholia