Aflatoxin B1 metabolism (WP1217)

Equus caballus

'''Aflatoxins''' are naturally occurring [[wikipedia:mycotoxin|mycotoxin]]s that are produced by many species of ''[[wikipedia:Aspergillus|Aspergillus]]'', a [[wikipedia:fungus|fungus]], most notably ''[[wikipedia:Aspergillus flavus|Aspergillus flavus]]'' and ''[[wikipedia:Aspergillus parasiticus|Aspergillus parasiticus]]''. After entering the body, aflatoxins are metabolized by the liver to a reactive intermediate, aflatoxin M1, an [[wikipedia:epoxide|epoxide]]. Aflatoxin B1 is considered the most toxic and is produced by both Aspergillus flavus and Aspergillus parasiticus. Source: [[wikipedia:Aflatoxin|Wikipedia]]

Authors

Thomas Kelder , Egon Willighagen , and Christine Chichester

Activity

last edited

Discuss this pathway

Check for ongoing discussions or start your own.

Cited In

Are you planning to include this pathway in your next publication? See How to Cite and add a link here to your paper once it's online.

Organisms

Equus caballus

Communities

Annotations

Pathway Ontology

aflatoxin metabolic pathway

Participants

Label Type Compact URI Comment
Aflatoxin B1 exo-8,9-epoxide-GSH Metabolite pubchem.compound:5460816
Aflatoxin B1 8,9-dihydrodiol Metabolite pubchem.compound:3035008
aflatoxin B1 Metabolite hmdb:HMDB0006552
Aflatoxin B1 exo-8,9-epoxide Metabolite pubchem.compound:104756
Aflatoxin M1 Metabolite pubchem.compound:15558498
Aflatoxin Q1 Metabolite pubchem.compound:104757
XP_001493936.1 GeneProduct ensembl:ENSECAG00000008153
XP_001917301.1 GeneProduct ensembl:ENSECAG00000006082
XP_001489453.1 GeneProduct ensembl:ENSECAG00000002100
XP_001489035.1 GeneProduct ensembl:ENSECAG00000019677

References

  1. Glutathione S-transferase-catalyzed conjugation of bioactivated aflatoxin B(1) in human lung: differential cellular distribution and lack of significance of the GSTM1 genetic polymorphism. Stewart RK, Smith GB, Donnelly PJ, Reid KR, Petsikas D, Conlan AA, et al. Carcinogenesis. 1999 Oct;20(10):1971–7. PubMed Europe PMC Scholia
  2. Reduction of aflatoxin B1 dialdehyde by rat and human aldo-keto reductases. Guengerich FP, Cai H, McMahon M, Hayes JD, Sutter TR, Groopman JD, et al. Chem Res Toxicol. 2001 Jun;14(6):727–37. PubMed Europe PMC Scholia
  3. Role of genetic polymorphism of glutathione-S-transferase T1 and microsomal epoxide hydrolase in aflatoxin-associated hepatocellular carcinoma. Tiemersma EW, Omer RE, Bunschoten A, van’t Veer P, Kok FJ, Idris MO, et al. Cancer Epidemiol Biomarkers Prev. 2001 Jul;10(7):785–91. PubMed Europe PMC Scholia
  4. Reaction of aflatoxin B(1) oxidation products with lysine. Guengerich FP, Arneson KO, Williams KM, Deng Z, Harris TM. Chem Res Toxicol. 2002 Jun;15(6):780–92. PubMed Europe PMC Scholia
  5. Translational strategies for cancer prevention in liver. Kensler TW, Qian GS, Chen JG, Groopman JD. Nat Rev Cancer. 2003 May;3(5):321–9. PubMed Europe PMC Scholia
  6. Efficient activation of aflatoxin B1 by cytochrome P450 2A13, an enzyme predominantly expressed in human respiratory tract. He XY, Tang L, Wang SL, Cai QS, Wang JS, Hong JY. Int J Cancer. 2006 Jun 1;118(11):2665–71. PubMed Europe PMC Scholia
  7. Cytochrome P450s and other enzymes in drug metabolism and toxicity. Guengerich FP. AAPS J. 2006 Mar 10;8(1):E101-11. PubMed Europe PMC Scholia
  8. CYP2A13 in human respiratory tissues and lung cancers: an immunohistochemical study with a new peptide-specific antibody. Zhu LR, Thomas PE, Lu G, Reuhl KR, Yang GY, Wang LD, et al. Drug Metab Dispos. 2006 Oct;34(10):1672–6. PubMed Europe PMC Scholia
  9. Aldo-keto reductases and bioactivation/detoxication. Jin Y, Penning TM. Annu Rev Pharmacol Toxicol. 2007;47:263–92. PubMed Europe PMC Scholia
  10. The aldo-keto reductase superfamily and its role in drug metabolism and detoxification. Barski OA, Tipparaju SM, Bhatnagar A. Drug Metab Rev. 2008;40(4):553–624. PubMed Europe PMC Scholia