SIDS susceptibility pathways (WP3130)

Bos taurus

In this model, we provide an integrated view of Sudden Infant Death Syndrome (SIDS) at the level of implicated tissues, signaling networks and genetics. The purpose of this model is to serve as an overview of research in this field and recommend new candidates for more focused or genome wide analyses. SIDS is the sudden and unexpected death of an infant (less than 1 year of age), almost always during deep sleep, where no cause of death can be found by autopsy. Factors that mediate SIDS are likely to be both biological and behavioral, such as sleeping position, environment and stress during a critical phase of infant development (http://www.nichd.nih.gov/health/topics/Sudden_Infant_Death_Syndrome.cfm). While no clear diagnostic markers currently exist, several polymorphisms have been identified which are significantly over-represented in distinct SIDS ethnic population. The large majority of these polymorphisms exist in genes associated with neuronal signaling, cardiac contraction and inflammatory response. These and other lines of evidence suggest that SIDS has a strong autonomic nervous system component (PMID:12350301, PMID: 20124538). One of the neuronal nuclei most strongly implicated in SIDS has been the raphe nucleus of the brain stem. In this nuclei there are ultrastructural, cellular and molecular changes associated with SIDS relative to controls (PMID:19342987, PMID: 20124538). This region of the brain is responsible for the large majority of neuronal serotonin produced and is functionally important in the regulation of normal cardiopulmonary activity, sleep and thermoregulation (see associated references). Genes associated with serotonin synthesis and receptivity have some of the strongest genetic association with SIDS. Principle among these genes the serotonin biosynthetic enzyme TPH2, the serotonin transporter SLC6A4 and the serotonin receptor HTR1A. SLC6A4 exhibits decreased expression in the raphe nucleus of the medulla oblongata and polymorphisms specifically associated with SIDS (PMID:19342987). In 75% of infants with SIDS, there is decreased HTR1A expression relative to controls along with an increase in the number of raphe serotonin neurons (PMID:19342987). Over-expression of the mouse orthologue of the HTR1A gene in the juvenile mouse medulla produces an analogous phenotype to SIDS with death due to bradycardia and hypothermia (PMID:18599790). These genes as well as those involved in serotonin synthesis are predicted to be transcriptionally regulated by a common factor, FEV (human orthologue of PET-1). PET-1 knock-out results in up to a 90% loss of serotonin neurons (PMID:12546819), while polymorphisms in FEV are over-represented in African American infants with SIDS. In addition to FEV, other transcription factors implicated in the regulation of these genes (Putative transcriptional regulators (TRs)) and FEV are also listed (see associated references). In addition to serotonin, vasopressin signaling and its regulation by serotonin appear to be important in a common pathway of cardiopulmonary regulation (PMID:2058745). A protein that associates with vasopressin signaling, named pituitary adenylate cyclase-activating polypeptide (ADCYAP1), results in a SIDS like phenotype, characterized by a high increase in spontaneous neonatal death, exacerbated by hypothermia and hypoxia (PMID:14608012), when disrupted in mice. Protein for this gene is widely distributed throughout the central nervous system (CNS), including autonomic control centers (PMID:12389210). ADCYAP1 and HTR1A are both predicted to be transcriptionally regulated by REST promoter binding. Regulation of G-protein coupled signaling pathways is illustrated for these genes, however, it is not clear whether ADCYAP1 acts directly upon raphe serotonin neurons. Another potentially important class of receptors in SIDS is nicotine. Receptors for nicotine are expressed in serotonin neurons of the raphe throughout development (PMID:18986852). Application of nicotine or cigarette smoke is sufficient to inhibit electrical activity of raphe serotonin neurons (PMID:17515803) and chronic nicotine infusion in rats decreases expression of SLC6A4 (PMID:18778441). Furthermore, nicotine exposure reduces both HTR1A and HTR2A immunoreactivity in several nuclei of the brainstem (PMID:17451658). In addition to CNS abnormalities, several studies have identified a critical link between cardiac arrhythmia (long QT syndrome) and SIDS (PMID:18928334). A number of genetic association studies identified functionally modifying mutations in critical cardiac channels in as many as 10% of all SIDS cases (PMID:18928334). These mutations have been predicted to predispose infants for long QT syndrome and sudden death. The highest proportion of SIDS associated mutations (both inherited and sporadic) is found in the sodium channel gene SCN5A. Examination of putative transcriptional regulators for these genes, highlights a diverse set of factors as well as a relatively common one (SP1). Finally, several miscellaneous mutations have been identified in genes associated with inflammatory response and thermoregulation. Infection is considered a significant risk factor for SIDS (PMID:19114412). For inflammatory associated genes, such as TNF alpha, interleukin 10 and complement component 4, many of these mutations are only significant in the presence of infection and SIDS. In addition to these mutations, cerebrospinal fluid levels of IL6 are increased in SIDS cases as well as IL6R levels in the arcuate nucleus of the brain, another major site of serotonin synthesis (PMID:19396608). Genes such as ILR6 and ADCYAP1 are also associated with autoimmune disorders, thus SIDS may also be associated with autoinflammation of autonomic centers in the brain. Regulation of thermogenesis by brown adipose tissue has been proposed be an important component of SIDS, given that SIDS incidence is highest in the winter time and that animal models of SIDS demonstrate variation in body temperature. Interestingly, activation of raphe HTR1A decreases both shivering and peripheral vasoconstriction in piglets (18094064). Although a putative significant polymorphism was identified in the thermoregulator gene HSP60, this only occurred in one SIDS case. It is important to note that in the large majority of all these studies, sleeping position and smoking were among the most significant risk factors for SIDS. In loving memory of Milo Salomonis (http://www.milosalomonis.org).

Authors

Martina Summer-Kutmon , Egon Willighagen , and Eric Weitz

Activity

last edited

Discuss this pathway

Check for ongoing discussions or start your own.

Cited In

Are you planning to include this pathway in your next publication? See How to Cite and add a link here to your paper once it's online.

Organisms

Bos taurus

Communities

Annotations

Pathway Ontology

serotonin signaling pathway

Disease Ontology

sudden infant death syndrome

Cell Type Ontology

raphe nuclei neuron cardiac muscle cell

Participants

Label Type Compact URI Comment
5-HT Metabolite hmdb:HMDB0000259
L-Tryptophan Metabolite hmdb:HMDB0000929
Nicotine Metabolite hmdb:HMDB0001934
Fluoxetine Metabolite cas:54910-89-3
5-HTP Metabolite hmdb:HMDB0000472
5-HIAA Metabolite hmdb:HMDB0000763
GABA Metabolite hmdb:HMDB0000112
Glutamate Metabolite hmdb:HMDB0004135
Dopamine Metabolite cas:62-31-7
Phenylalanine Metabolite cas:63-91-2
L-DOPA Metabolite cas:59-92-7
Acetylcholine Metabolite cas:51-84-3
Choline Metabolite cas:62-49-7
Tyrosine Metabolite cas:60-18-4
SCN5A GeneProduct ensembl:ENSBTAG00000009155 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:6331
NK1R GeneProduct ensembl:ENSBTAG00000015575 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000115353
ADCYAP1 GeneProduct ensembl:ENSBTAG00000020650 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:116
ALDOA GeneProduct ensembl:ENSBTAG00000012927 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000149925
IL10 GeneProduct ensembl:ENSBTAG00000006685 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:3586
TPH1 GeneProduct ensembl:ENSBTAG00000005343 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:7166
CREB1 GeneProduct ensembl:ENSBTAG00000005474 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000118260
SSTR2 GeneProduct ensembl:ENSBTAG00000017136 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000180616
MAOA GeneProduct ensembl:ENSBTAG00000016206 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:4128
GR-A GeneProduct ensembl:ENSBTAG00000019472 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000113580
SP1 GeneProduct ensembl:ENSBTAG00000003021 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:6667
HES1 GeneProduct ensembl:ENSBTAG00000000569 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:3280
ACADM GeneProduct ensembl:ENSBTAG00000024240 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:34
C4B GeneProduct ensembl:ENSBTAG00000006864 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:721
MGC157163 GeneProduct ensembl:ENSBTAG00000011789 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:5978
5HTR1A GeneProduct ensembl:ENSBTAG00000040439 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:3350
CC2D1A GeneProduct ensembl:ENSBTAG00000006068 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:54862
NFKB1 GeneProduct ensembl:ENSBTAG00000020270 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000109320
CTCF GeneProduct ensembl:ENSBTAG00000013757 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:10664
NKX3-1 GeneProduct ensembl:ENSBTAG00000001221 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:4824
HADHA GeneProduct ensembl:ENSBTAG00000015038 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:3030
RYR2 GeneProduct ensembl:ENSBTAG00000022886 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:6262
CHRNB4 GeneProduct ensembl:ENSBTAG00000003132 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:1143
TNF GeneProduct ensembl:ENSBTAG00000025471 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:7124
EP300 GeneProduct ensembl:ENSBTAG00000016198 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:2033
MEF2C GeneProduct ensembl:ENSBTAG00000020701 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000081189
NGF GeneProduct ensembl:ENSBTAG00000007446 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000134259
bta-mir-16a GeneProduct ensembl:ENSBTAG00000036389 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:406950
PLP1 GeneProduct ensembl:ENSBTAG00000006977 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000123560
C4A GeneProduct ensembl:ENSBTAG00000006864 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:720
bta-mir-130a GeneProduct ensembl:ENSBTAG00000030122 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000208009
RUNX3 GeneProduct ensembl:ENSBTAG00000019800 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000020633
NEUROD1 GeneProduct ensembl:ENSBTAG00000001755 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000162992
HIF1A GeneProduct ensembl:ENSBTAG00000020935 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000100644
DLX2 GeneProduct ensembl:ENSBTAG00000005741 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000115844
JUN GeneProduct ensembl:ENSBTAG00000004037 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000177606
GATA2 GeneProduct ensembl:ENSBTAG00000019707 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:2624
bta-mir-210 GeneProduct ensembl:ENSBTAG00000046437 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000199038
CREBBP GeneProduct ensembl:ENSBTAG00000026403 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000005339
KCNH2 GeneProduct ensembl:ENSBTAG00000004078 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:3757
DDC GeneProduct ensembl:ENSBTAG00000020869 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:1644
SP3 GeneProduct ensembl:ENSBTAG00000000176 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000172845
CAV3 GeneProduct ensembl:ENSBTAG00000022699 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:859
CXCL8 GeneProduct ensembl:ENSBTAG00000019716 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:3576
AVP GeneProduct ensembl:ENSBTAG00000008027 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:551
ADCYAP1R1 GeneProduct ensembl:ENSBTAG00000020247 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:117
PPARGC1A GeneProduct ensembl:ENSBTAG00000017024 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:10891
THRB GeneProduct ensembl:ENSBTAG00000017802 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000151090
PPARGC1B GeneProduct ensembl:ENSBTAG00000012943 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:133522
MGC157163 GeneProduct ensembl:ENSBTAG00000011789 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000084093
LMX1B GeneProduct ensembl:ENSBTAG00000010228 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:4010
HES1 GeneProduct ensembl:ENSBTAG00000000569 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000114315
CHRNA4 GeneProduct ensembl:ENSBTAG00000017198 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:1137
NFYA GeneProduct ensembl:ENSBTAG00000009905 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:4800
KCNQ1 GeneProduct ensembl:ENSBTAG00000010986 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:3784
ASCL1 GeneProduct ensembl:ENSBTAG00000016227 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:429
ESR2 GeneProduct ensembl:ENSBTAG00000004498 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:2100
BHLHE40 GeneProduct ensembl:ENSBTAG00000009863 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000134107
RORA GeneProduct ensembl:ENSBTAG00000015904 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:6095
HTR2A GeneProduct ensembl:ENSBTAG00000013498 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:3356
SP1 GeneProduct ensembl:ENSBTAG00000003021 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000185591
VIPR2 GeneProduct ensembl:ENSBTAG00000037649 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:7434
EN1 GeneProduct ensembl:ENSBTAG00000021494 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:2019
TCF3 GeneProduct ensembl:ENSBTAG00000008695 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000071564
IL6 GeneProduct ensembl:ENSBTAG00000014921 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:3569
YBX1 GeneProduct ensembl:ENSBTAG00000017368 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:4904
GATA3 GeneProduct ensembl:ENSBTAG00000017243 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:2625
VIPR1 GeneProduct ensembl:ENSBTAG00000006567 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:7433
TPH2 GeneProduct ensembl:ENSBTAG00000020792 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:121278
SLC6A4 GeneProduct ensembl:ENSBTAG00000019349 Contains an alternative promoter in the first and possibly second intron.
HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:6532
TP73 GeneProduct ensembl:ENSBTAG00000005812 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000078900
CDCA7L GeneProduct ensembl:ENSBTAG00000004976 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:55536
HSPD1 GeneProduct ensembl:ENSBTAG00000012586 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:3329
POU3F2 GeneProduct ensembl:ENSBTAG00000024773 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:5454
FEV GeneProduct ensembl:ENSBTAG00000020191 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:54738
SSTR1 GeneProduct ensembl:ENSBTAG00000006582 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000139874
ECE1 GeneProduct ensembl:ENSBTAG00000002977 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:1889
GNB3 GeneProduct ensembl:ENSBTAG00000016043 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:2784
PKNOX1 GeneProduct ensembl:ENSBTAG00000014153 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000160199
AR GeneProduct ensembl:ENSBTAG00000022255 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:367
PBX1 GeneProduct ensembl:ENSBTAG00000013801 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000185630
FOXM1 GeneProduct ensembl:ENSBTAG00000015875 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:2305
IL6R GeneProduct ensembl:ENSBTAG00000018474 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:3570
CREB1 GeneProduct ensembl:ENSBTAG00000005474 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:1385
GR-A GeneProduct ensembl:ENSBTAG00000019472 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:2908
PHOX2A GeneProduct ensembl:ENSBTAG00000019168 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:401
RET GeneProduct ensembl:ENSBTAG00000000570 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:5979
HES5 GeneProduct ensembl:ENSBTAG00000002483 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:388585
TLX3 GeneProduct ensembl:ENSBTAG00000010003 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:30012
NFKB1 GeneProduct ensembl:ENSBTAG00000020270 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:4790
NKX2-2 GeneProduct ensembl:ENSBTAG00000010277 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:4821
EGR1 GeneProduct ensembl:ENSBTAG00000010069 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000120738
PHOX2B GeneProduct ensembl:ENSBTAG00000044166 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:8929
CTNNB1 GeneProduct ensembl:ENSBTAG00000016420 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000168036
SOX2 GeneProduct ensembl:ENSBTAG00000011598 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000181449
NANOG GeneProduct ensembl:ENSBTAG00000020916 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000111704
POU5F1 GeneProduct ensembl:ENSBTAG00000001873 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000204531
BDNF GeneProduct ensembl:ENSBTAG00000008134 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000176697
NTRK2 GeneProduct ensembl:ENSBTAG00000010647 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:4915
GABRA1 GeneProduct ensembl:ENSBTAG00000030286 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:2554
CHRM2 GeneProduct ensembl:ENSBTAG00000014674 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:1129
GJA1 GeneProduct ensembl:ENSBTAG00000001835 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000152661
SNTA1 GeneProduct ensembl:ENSBTAG00000000512 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:6640
KCNJ8 GeneProduct ensembl:ENSBTAG00000002551 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:3764
PRKAR2B GeneProduct ensembl:ENSBTAG00000014958 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:5577
YWHAE GeneProduct ensembl:ENSBTAG00000005664 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:7531
YWHAZ GeneProduct ensembl:ENSBTAG00000000236 PMID: 9861170 PMID: 1317796
HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:7534
PRKAR1B GeneProduct ensembl:ENSBTAG00000046142 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:5575
PRKAR2A GeneProduct ensembl:ENSBTAG00000014205 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:5576
YWHAQ GeneProduct ensembl:ENSBTAG00000002108 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:10971
YWHAG GeneProduct ensembl:ENSBTAG00000004077 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:7532
PRKAR1A GeneProduct ensembl:ENSBTAG00000008621 KAP0 HUMAN
HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:5573
YWHAH GeneProduct ensembl:ENSBTAG00000011631 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:7533
YWHAB GeneProduct ensembl:ENSBTAG00000016846 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:7529
PRKACB GeneProduct ensembl:ENSBTAG00000011953 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:5567
PRKACA GeneProduct ensembl:ENSBTAG00000006642 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:5566
SLC9A3 GeneProduct ensembl:ENSBTAG00000004629 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:6550
CASP3 GeneProduct ensembl:ENSBTAG00000015874 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000164305
FMO3 GeneProduct ensembl:ENSBTAG00000020597 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000007933
G6PC GeneProduct ensembl:ENSBTAG00000010184 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000131482
GCK GeneProduct ensembl:ENSBTAG00000032288 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000106633
GPD1L GeneProduct ensembl:ENSBTAG00000009826 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000152642
GRIN1 GeneProduct ensembl:ENSBTAG00000047202 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000176884
HADHB GeneProduct ensembl:ENSBTAG00000010083 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000138029
HTR3A GeneProduct ensembl:ENSBTAG00000010791 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000166736
SCN3B GeneProduct ensembl:ENSBTAG00000016768 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000166257
SCN4B GeneProduct ensembl:ENSBTAG00000039340 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000177098
SST GeneProduct ensembl:ENSBTAG00000017312 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000157005
AQP4 GeneProduct ensembl:ENSBTAG00000019037 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000171885
CPT1A GeneProduct ensembl:ENSBTAG00000021999 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000110090
IL1A GeneProduct ensembl:ENSBTAG00000010349 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000115008
IL1B GeneProduct ensembl:ENSBTAG00000001321 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000125538
IL1RN GeneProduct ensembl:ENSBTAG00000019665 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000136689
IL13 GeneProduct ensembl:ENSBTAG00000015953 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000169194
TSPYL1 GeneProduct ensembl:ENSBTAG00000010885 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000189241
VEGFA GeneProduct ensembl:ENSBTAG00000047561 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000112715
CHAT GeneProduct ensembl:ENSBTAG00000016814 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000070748
PAH GeneProduct ensembl:ENSBTAG00000012794 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:5053
TH GeneProduct ensembl:ENSBTAG00000026768 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000180176
NOS1AP GeneProduct ensembl:ENSBTAG00000010158 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000198929
MAP-2 GeneProduct ensembl:ENSBTAG00000018130 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000078018
TAC1 GeneProduct ensembl:ENSBTAG00000015356 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000006128
SLC1A3 GeneProduct ensembl:ENSBTAG00000018245 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000079215
SLC25A4 GeneProduct ensembl:ENSBTAG00000013208 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000151729
SNAP25 GeneProduct ensembl:ENSBTAG00000008323 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000132639
NFKB2 GeneProduct ensembl:ENSBTAG00000006017 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000077150
HDAC9 GeneProduct ensembl:ENSBTAG00000003808 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000048052
MYB GeneProduct ensembl:ENSBTAG00000012074 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000118513
POU2F2 GeneProduct ensembl:ENSBTAG00000008556 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000028277
CREM GeneProduct ensembl:ENSBTAG00000016060 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000095794
CHRNB2 GeneProduct ensembl:ENSBTAG00000007517 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:1141
CHRNA7 GeneProduct ensembl:ENSBTAG00000015775 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000175344
HDAC1 GeneProduct ensembl:ENSBTAG00000012698 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000116478
MBD1 GeneProduct ensembl:ENSBTAG00000003801 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000141644
MECP2 GeneProduct ensembl:ENSBTAG00000047855 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000169057
VAMP2 GeneProduct ensembl:ENSBTAG00000003891 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000220205
TPPP GeneProduct ensembl:ENSBTAG00000047116 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000171368
ATP1A3 GeneProduct ensembl:ENSBTAG00000018635 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000105409
GAPDH GeneProduct ensembl:ENSBTAG00000018554 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000111640
HSP90B1 GeneProduct ensembl:ENSBTAG00000003362 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000166598
TF GeneProduct ensembl:ENSBTAG00000007273 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000091513
SPTBN1 GeneProduct ensembl:ENSBTAG00000006995 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000115306
YWHAG GeneProduct ensembl:ENSBTAG00000004077 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000170027

References

  1. Vasopressin and autonomic mechanisms mediate cardiovascular actions of central serotonin. Pérgola PE, Alper RH. Am J Physiol. 1991 Jun;260(6 Pt 2):R1188-93. PubMed Europe PMC Scholia
  2. Mouse alpha 1- and beta 2-syntrophin gene structure, chromosome localization, and homology with a discs large domain. Adams ME, Dwyer TM, Dowler LL, White RA, Froehner SC. J Biol Chem. 1995 Oct 27;270(43):25859–65. PubMed Europe PMC Scholia
  3. Positive and negative effects of nuclear receptors on transcription activation by AP-1 of the human choline acetyltransferase proximal promoter. Schmitt M, Bausero P, Simoni P, Queuche D, Geoffroy V, Marschal C, et al. J Neurosci Res. 1995 Feb 1;40(2):152–64. PubMed Europe PMC Scholia
  4. The Oct-2 transcription factor represses tyrosine hydroxylase expression via a heptamer TAATGARAT-like motif in the gene promoter. Dawson SJ, Yoon SO, Chikaraishi DM, Lillycrop KA, Latchman DS. Nucleic Acids Res. 1994 Mar 25;22(6):1023–8. PubMed Europe PMC Scholia
  5. Cloning and characterization of the 5’-upstream regulatory region of the Ca(2+)-release channel gene of cardiac sarcoplasmic reticulum. Nishida K, Otsu K, Hori M, Kuzuya T, Tada M. Eur J Biochem. 1996 Sep 1;240(2):408–15. PubMed Europe PMC Scholia
  6. Human heat shock protein gene polymorphisms and sudden infant death syndrome. Rahim RA, Boyd PA, Ainslie Patrick WJ, Burdon RH. Arch Dis Child. 1996 Nov;75(5):451–2. PubMed Europe PMC Scholia
  7. Tyrosine hydroxylase gene promoter activity is regulated by both cyclic AMP-responsive element and AP1 sites following calcium influx. Evidence for cyclic amp-responsive element binding protein-independent regulation. Nagamoto-Combs K, Piech KM, Best JA, Sun B, Tank AW. J Biol Chem. 1997 Feb 28;272(9):6051–8. PubMed Europe PMC Scholia
  8. Genomic and mutational analysis of the mitochondrial trifunctional protein beta-subunit (HADHB) gene in patients with trifunctional protein deficiency. Orii KE, Aoyama T, Wakui K, Fukushima Y, Miyajima H, Yamaguchi S, et al. Hum Mol Genet. 1997 Aug;6(8):1215–24. PubMed Europe PMC Scholia
  9. Winged helix hepatocyte nuclear factor 3 and POU-domain protein brn-2/N-oct-3 bind overlapping sites on the neuronal promoter of human aromatic L-amino acid decarboxylase gene. Raynal JF, Dugast C, Le Van Thaï A, Weber MJ. Brain Res Mol Brain Res. 1998 May;56(1–2):227–37. PubMed Europe PMC Scholia
  10. CBF/NF-Y activates transcription of the human tryptophan hydroxylase gene through an inverted CCAAT box. Teerawatanasuk N, Carr LG. Brain Res Mol Brain Res. 1998 Mar 30;55(1):61–70. PubMed Europe PMC Scholia
  11. Isolation and functional analysis of alternative promoters in the human aquaporin-4 water channel gene. Umenishi F, Verkman AS. Genomics. 1998 Jun 15;50(3):373–7. PubMed Europe PMC Scholia
  12. Functional and cooperative interactions between the homeodomain PDX1, Pbx, and Prep1 factors on the somatostatin promoter. Goudet G, Delhalle S, Biemar F, Martial JA, Peers B. J Biol Chem. 1999 Feb 12;274(7):4067–73. PubMed Europe PMC Scholia
  13. The complement component C4 in sudden infant death. Opdal SH, Vege A, Stave AK, Rognum TO. Eur J Pediatr. 1999 Mar;158(3):210–2. PubMed Europe PMC Scholia
  14. Reduction in choline acetyltransferase immunoreactivity but not muscarinic-m2 receptor immunoreactivity in the brainstem of SIDS infants. Mallard C, Tolcos M, Leditschke J, Campbell P, Rees S. J Neuropathol Exp Neurol. 1999 Mar;58(3):255–64. PubMed Europe PMC Scholia
  15. Localization of regulatory protein binding sites in the proximal region of human myometrial connexin 43 gene. Echetebu CO, Ali M, Izban MG, MacKay L, Garfield RE. Mol Hum Reprod. 1999 Aug;5(8):757–66. PubMed Europe PMC Scholia
  16. The ETS domain factor Pet-1 is an early and precise marker of central serotonin neurons and interacts with a conserved element in serotonergic genes. Hendricks T, Francis N, Fyodorov D, Deneris ES. J Neurosci. 1999 Dec 1;19(23):10348–56. PubMed Europe PMC Scholia
  17. Transcriptional repression of neurotrophin receptor trkB by thyroid hormone in the developing rat brain. Pombo PM, Barettino D, Espliguero G, Metsis M, Iglesias T, Rodriguez-Pena A. J Biol Chem. 2000 Dec 1;275(48):37510–7. PubMed Europe PMC Scholia
  18. Nuclear factor kappaB/p49 is a negative regulatory factor in nerve growth factor-induced choline acetyltransferase promoter activity in PC12 cells. Toliver-Kinsky T, Wood T, Perez-Polo JR. J Neurochem. 2000 Dec;75(6):2241–51. PubMed Europe PMC Scholia
  19. Involvement of NF-Y and Sp1 in basal and cAMP-stimulated transcriptional activation of the tryptophan hydroxylase (TPH ) gene in the pineal gland. Côté F, Schussler N, Boularand S, Peirotes A, Thévenot E, Mallet J, et al. J Neurochem. 2002 May;81(4):673–85. PubMed Europe PMC Scholia
  20. Synergistic activation of the human choline acetyltransferase gene by c-Myb and C/EBPbeta. Robert I, Sutter A, Quirin-Stricker C. Brain Res Mol Brain Res. 2002 Oct 15;106(1–2):124–35. PubMed Europe PMC Scholia
  21. NMDA receptor 1 expression in the brainstem of human infants and its relevance to the sudden infant death syndrome (SIDS). Machaalani R, Waters KA. J Neuropathol Exp Neurol. 2003 Oct;62(10):1076–85. PubMed Europe PMC Scholia
  22. Sudden neonatal death in PACAP-deficient mice is associated with reduced respiratory chemoresponse and susceptibility to apnoea. Cummings KJ, Pendlebury JD, Sherwood NM, Wilson RJA. J Physiol. 2004 Feb 15;555(Pt 1):15–26. PubMed Europe PMC Scholia
  23. The correlation between microtubule-associated protein 2 in the brainstem of SIDS victims and physiological data on sleep apnea. Sawaguchi T, Patricia F, Kadhim H, Groswasser J, Sottiaux M, Nishida H, et al. Early Hum Dev. 2003 Dec;75 Suppl:S87-97. PubMed Europe PMC Scholia
  24. Cooperative dimerization of the POU domain protein Brn-2 on a new motif activates the neuronal promoter of the human aromatic L-amino acid decarboxylase gene. Dugast-Darzacq C, Egloff S, Weber MJ. Brain Res Mol Brain Res. 2004 Jan 5;120(2):151–63. PubMed Europe PMC Scholia
  25. Cell type-dependent recruitment of trichostatin A-sensitive repression of the human 5-HT1A receptor gene. Lemonde S, Rogaeva A, Albert PR. J Neurochem. 2004 Feb;88(4):857–68. PubMed Europe PMC Scholia
  26. The regulatory mechanism for neuron specific expression of PACAP gene. Miyata A, Sugawara H, Iwata S ichi, Shimizu T, Kangawa K. Nihon Yakurigaku Zasshi. 2004 Apr;123(4):235–42. PubMed Europe PMC Scholia
  27. RORalpha regulates the expression of genes involved in lipid homeostasis in skeletal muscle cells: caveolin-3 and CPT-1 are direct targets of ROR. Lau P, Nixon SJ, Parton RG, Muscat GEO. J Biol Chem. 2004 Aug 27;279(35):36828–40. PubMed Europe PMC Scholia
  28. Sudden infant death syndrome: case-control frequency differences at genes pertinent to early autonomic nervous system embryologic development. Weese-Mayer DE, Berry-Kravis EM, Zhou L, Maher BS, Curran ME, Silvestri JM, et al. Pediatr Res. 2004 Sep;56(3):391–5. PubMed Europe PMC Scholia
  29. Mapping of sudden infant death with dysgenesis of the testes syndrome (SIDDT) by a SNP genome scan and identification of TSPYL loss of function. Puffenberger EG, Hu-Lince D, Parod JM, Craig DW, Dobrin SE, Conway AR, et al. Proc Natl Acad Sci U S A. 2004 Aug 10;101(32):11689–94. PubMed Europe PMC Scholia
  30. Role of somatostatin and apoptosis in breathing control in sudden perinatal and infant unexplained death. Lavezzi AM, Ottaviani G, Matturri L. Clin Neuropathol. 2004;23(6):304–10. PubMed Europe PMC Scholia
  31. A differentially autoregulated Pet-1 enhancer region is a critical target of the transcriptional cascade that governs serotonin neuron development. Scott MM, Krueger KC, Deneris ES. J Neurosci. 2005 Mar 9;25(10):2628–36. PubMed Europe PMC Scholia
  32. Identification of novel polymorphisms in the glucokinase and glucose-6-phosphatase genes in infants who died suddenly and unexpectedly. Forsyth L, Hume R, Howatson A, Busuttil A, Burchell A. J Mol Med (Berl). 2005 Aug;83(8):610–8. PubMed Europe PMC Scholia
  33. Transcriptional regulation of neuronal genes and its effect on neural functions: cumulative mRNA expression of PACAP and BDNF genes controlled by calcium and cAMP signals in neurons. Fukuchi M, Tabuchi A, Tsuda M. J Pharmacol Sci. 2005 Jul;98(3):212–8. PubMed Europe PMC Scholia
  34. Increased serotonin receptor availability in human sleep: evidence from an [18F]MPPF PET study in narcolepsy. Derry C, Benjamin C, Bladin P, le Bars D, Tochon-Danguy H, Berkovic SF, et al. Neuroimage. 2006 Apr 1;30(2):341–8. PubMed Europe PMC Scholia
  35. Cell-specific repressor or enhancer activities of Deaf-1 at a serotonin 1A receptor gene polymorphism. Czesak M, Lemonde S, Peterson EA, Rogaeva A, Albert PR. J Neurosci. 2006 Feb 8;26(6):1864–71. PubMed Europe PMC Scholia
  36. Glucocorticoid and androgen activation of monoamine oxidase A is regulated differently by R1 and Sp1. Ou XM, Chen K, Shih JC. J Biol Chem. 2006 Jul 28;281(30):21512–25. PubMed Europe PMC Scholia
  37. Regulation of human tyrosine hydroxylase gene by neuron-restrictive silencer factor. Kim SM, Yang JW, Park MJ, Lee JK, Kim SU, Lee YS, et al. Biochem Biophys Res Commun. 2006 Jul 28;346(2):426–35. PubMed Europe PMC Scholia
  38. Sudden infant death syndrome: Case-control frequency differences in paired like homeobox (PHOX) 2B gene. Rand CM, Weese-Mayer DE, Zhou L, Maher BS, Cooper ME, Marazita ML, et al. Am J Med Genet A. 2006 Aug 1;140(15):1687–91. PubMed Europe PMC Scholia
  39. Comparisons between transcriptional regulation and RNA expression in human embryonic stem cell lines. Player A, Wang Y, Bhattacharya B, Rao M, Puri RK, Kawasaki ES. Stem Cells Dev. 2006 Jun;15(3):315–23. PubMed Europe PMC Scholia
  40. Association of sudden infant death syndrome with VEGF and IL-6 gene polymorphisms. Dashash M, Pravica V, Hutchinson IV, Barson AJ, Drucker DB. Hum Immunol. 2006 Aug;67(8):627–33. PubMed Europe PMC Scholia
  41. Transcriptional regulation of human MAP2 gene in melanoma: role of neuronal bHLH factors and Notch1 signaling. Bhat KMR, Maddodi N, Shashikant C, Setaluri V. Nucleic Acids Res. 2006 Aug 11;34(13):3819–32. PubMed Europe PMC Scholia
  42. The G protein beta3 subunit 825C allele is associated with sudden infant death due to infection. Hauge Opdal S, Melien Ø, Rootwelt H, Vege A, Arnestad M, Ole Rognum T. Acta Paediatr. 2006 Sep;95(9):1129–32. PubMed Europe PMC Scholia
  43. Multiple serotonergic brainstem abnormalities in sudden infant death syndrome. Paterson DS, Trachtenberg FL, Thompson EG, Belliveau RA, Beggs AH, Darnall R, et al. JAMA. 2006 Nov 1;296(17):2124–32. PubMed Europe PMC Scholia
  44. Evidence of HIF-1 functional binding activity to caspase-3 promoter after photothrombotic cerebral ischemia. Van Hoecke M, Prigent-Tessier AS, Garnier PE, Bertrand NM, Filomenko R, Bettaieb A, et al. Mol Cell Neurosci. 2007 Jan;34(1):40–7. PubMed Europe PMC Scholia
  45. Overexpression HERG K(+) channel gene mediates cell-growth signals on activation of oncoproteins SP1 and NF-kappaB and inactivation of tumor suppressor Nkx3.1. Lin H, Xiao J, Luo X, Wang H, Gao H, Yang B, et al. J Cell Physiol. 2007 Jul;212(1):137–47. PubMed Europe PMC Scholia
  46. Genetic variation in hepatic glucose-6-phosphatase system genes in cases of sudden infant death syndrome. Forsyth L, Scott HM, Howatson A, Busuttil A, Hume R, Burchell A. J Pathol. 2007 May;212(1):112–20. PubMed Europe PMC Scholia
  47. Differential regulation of the serotonin transporter gene by lithium is mediated by transcription factors, CCCTC binding protein and Y-box binding protein 1, through the polymorphic intron 2 variable number tandem repeat. Roberts J, Scott AC, Howard MR, Breen G, Bubb VJ, Klenova E, et al. J Neurosci. 2007 Mar 14;27(11):2793–801. PubMed Europe PMC Scholia
  48. Hypoxia-inducible factor-1 (HIF-1) is a transcriptional activator of the TrkB neurotrophin receptor gene. Martens LK, Kirschner KM, Warnecke C, Scholz H. J Biol Chem. 2007 May 11;282(19):14379–88. PubMed Europe PMC Scholia
  49. Ca2+, CREB and krüppel: a novel KLF7-binding element conserved in mouse and human TRKB promoters is required for CREB-dependent transcription. Kingsbury TJ, Krueger BK. Mol Cell Neurosci. 2007 Jul;35(3):447–55. PubMed Europe PMC Scholia
  50. A mechanism for sudden infant death syndrome (SIDS): stress-induced leak via ryanodine receptors. Tester DJ, Dura M, Carturan E, Reiken S, Wronska A, Marks AR, et al. Heart Rhythm. 2007 Jun;4(6):733–9. PubMed Europe PMC Scholia
  51. Characterization of a functional promoter polymorphism of the human tryptophan hydroxylase 2 gene in serotonergic raphe neurons. Scheuch K, Lautenschlager M, Grohmann M, Stahlberg S, Kirchheiner J, Zill P, et al. Biol Psychiatry. 2007 Dec 1;62(11):1288–94. PubMed Europe PMC Scholia
  52. The transcription factor Runx3 represses the neurotrophin receptor TrkB during lineage commitment of dorsal root ganglion neurons. Inoue K ichi, Ito K, Osato M, Lee B, Bae SC, Ito Y. J Biol Chem. 2007 Aug 17;282(33):24175–84. PubMed Europe PMC Scholia
  53. Sudden infant death syndrome: rare mutation in the serotonin system FEV gene. Rand CM, Berry-Kravis EM, Zhou L, Fan W, Weese-Mayer DE. Pediatr Res. 2007 Aug;62(2):180–2. PubMed Europe PMC Scholia
  54. Regulation of tryptophan hydroxylase-2 gene expression by a bipartite RE-1 silencer of transcription/neuron restrictive silencing factor (REST/NRSF) binding motif. Patel PD, Bochar DA, Turner DL, Meng F, Mueller HM, Pontrello CG. J Biol Chem. 2007 Sep 14;282(37):26717–24. PubMed Europe PMC Scholia
  55. Synergy between the RE-1 silencer of transcription and NFkappaB in the repression of the neurotransmitter gene TAC1 in human mesenchymal stem cells. Greco SJ, Smirnov SV, Murthy RG, Rameshwar P. J Biol Chem. 2007 Oct 12;282(41):30039–50. PubMed Europe PMC Scholia
  56. 5-HT(2) receptor subtypes mediate different long-term changes in GABAergic activity to parasympathetic cardiac vagal neurons in the nucleus ambiguus. Dergacheva O, Griffioen KJS, Wang X, Kamendi H, Gorini C, Mendelowitz D. Neuroscience. 2007 Nov 9;149(3):696–705. PubMed Europe PMC Scholia
  57. Activation and stabilization of human tryptophan hydroxylase 2 by phosphorylation and 14-3-3 binding. Winge I, McKinney JA, Ying M, D’Santos CS, Kleppe R, Knappskog PM, et al. Biochem J. 2008 Feb 15;410(1):195–204. PubMed Europe PMC Scholia
  58. NF-kappaB-dependent transcriptional regulation of the cardiac scn5a sodium channel by angiotensin II. Shang LL, Sanyal S, Pfahnl AE, Jiao Z, Allen J, Liu H, et al. Am J Physiol Cell Physiol. 2008 Jan;294(1):C372-9. PubMed Europe PMC Scholia
  59. Post-mortem analysis for two prevalent beta-oxidation mutations in sudden infant death. Yang Z, Lantz PE, Ibdah JA. Pediatr Int. 2007 Dec;49(6):883–7. PubMed Europe PMC Scholia
  60. Neuronal cell death in the Sudden Infant Death Syndrome brainstem and associations with risk factors. Machaalani R, Waters KA. Brain. 2008 Jan;131(Pt 1):218–28. PubMed Europe PMC Scholia
  61. NHE3 in the human brainstem: implication for the pathogenesis of the sudden infant death syndrome (SIDS)? Wiemann M, Frede S, Tschentscher F, Kiwull-Schöne H, Kiwull P, Bingmann D, et al. Adv Exp Med Biol. 2008;605:508–13. PubMed Europe PMC Scholia
  62. Activation of 5-HT1A receptors in medullary raphé disrupts sleep and decreases shivering during cooling in the conscious piglet. Brown JW, Sirlin EA, Benoit AM, Hoffman JM, Darnall RA. Am J Physiol Regul Integr Comp Physiol. 2008 Mar;294(3):R884-94. PubMed Europe PMC Scholia
  63. Surface expression of GABAA receptors is transcriptionally controlled by the interplay of cAMP-response element-binding protein and its binding partner inducible cAMP early repressor. Hu Y, Lund IV, Gravielle MC, Farb DH, Brooks-Kayal AR, Russek SJ. J Biol Chem. 2008 Apr 4;283(14):9328–40. PubMed Europe PMC Scholia
  64. Genomic structure, transcriptional control, and tissue distribution of HERG1 and KCNQ1 genes. Luo X, Xiao J, Lin H, Lu Y, Yang B, Wang Z. Am J Physiol Heart Circ Physiol. 2008 Mar;294(3):H1371-80. PubMed Europe PMC Scholia
  65. BHLHB2 controls Bdnf promoter 4 activity and neuronal excitability. Jiang X, Tian F, Du Y, Copeland NG, Jenkins NA, Tessarollo L, et al. J Neurosci. 2008 Jan 30;28(5):1118–30. PubMed Europe PMC Scholia
  66. Sp1-like sequences mediate human caspase-3 promoter activation by p73 and cisplatin. Sudhakar C, Jain N, Swarup G. FEBS J. 2008 May;275(9):2200–13. PubMed Europe PMC Scholia
  67. A functional polymorphism in the tyrosine hydroxylase gene indicates a role of noradrenalinergic signaling in sudden infant death syndrome. Klintschar M, Reichenpfader B, Saternus KS. J Pediatr. 2008 Aug;153(2):190–3. PubMed Europe PMC Scholia
  68. TNF-alpha promoter polymorphisms in sudden infant death. Ferrante L, Opdal SH, Vege A, Rognum TO. Hum Immunol. 2008 Jun;69(6):368–73. PubMed Europe PMC Scholia
  69. Sporadic autonomic dysregulation and death associated with excessive serotonin autoinhibition. Audero E, Coppi E, Mlinar B, Rossetti T, Caprioli A, Banchaabouchi MA, et al. Science. 2008 Jul 4;321(5885):130–3. PubMed Europe PMC Scholia
  70. TNF-alpha and IL-10 gene polymorphisms versus cardioimmunological responses in sudden infant death. Perskvist N, Skoglund K, Edston E, Bäckström G, Lodestad I, Palm U. Fetal Pediatr Pathol. 2008;27(3):149–65. PubMed Europe PMC Scholia
  71. Transcriptional regulation at a HTR1A polymorphism associated with mental illness. Le François B, Czesak M, Steubl D, Albert PR. Neuropharmacology. 2008 Nov;55(6):977–85. PubMed Europe PMC Scholia
  72. PHOX2B mutations and ventilatory control. Gallego J, Dauger S. Respir Physiol Neurobiol. 2008 Dec 10;164(1–2):49–54. PubMed Europe PMC Scholia
  73. Chronic effect of nicotine on serotonin transporter mRNA in the raphe nucleus of rats: reversal by co-administration of bupropion. Semba J, Wakuta M. Psychiatry Clin Neurosci. 2008 Aug;62(4):435–41. PubMed Europe PMC Scholia
  74. Association between the G1001C polymorphism in the GRIN1 gene promoter and schizophrenia in the Iranian population. Galehdari H, Pooryasin A, Foroughmand A, Daneshmand S, Saadat M. J Mol Neurosci. 2009 Jun;38(2):178–81. PubMed Europe PMC Scholia
  75. Association of dopamine transporter and monoamine oxidase molecular polymorphisms with sudden infant death syndrome and stillbirth: new insights into the serotonin hypothesis. Filonzi L, Magnani C, Lavezzi AM, Rindi G, Parmigiani S, Bevilacqua G, et al. Neurogenetics. 2009 Feb;10(1):65–72. PubMed Europe PMC Scholia
  76. Cardiomyopathic and channelopathic causes of sudden unexplained death in infants and children. Tester DJ, Ackerman MJ. Annu Rev Med. 2009;60:69–84. PubMed Europe PMC Scholia
  77. Sudden infant death syndrome (SIDS) in African Americans: polymorphisms in the gene encoding the stress peptide pituitary adenylate cyclase-activating polypeptide (PACAP). Cummings KJ, Klotz C, Liu WQ, Weese-Mayer DE, Marazita ML, Cooper ME, et al. Acta Paediatr. 2009 Mar;98(3):482–9. PubMed Europe PMC Scholia
  78. The role of 5-HT3 and other excitatory receptors in central cardiorespiratory responses to hypoxia: implications for sudden infant death syndrome. Dergacheva O, Kamendi H, Wang X, Pinol RM, Frank J, Jameson H, et al. Pediatr Res. 2009 Jun;65(6):625–30. PubMed Europe PMC Scholia
  79. Positron emission tomography quantification of serotonin-1A receptor binding in medication-free bipolar depression. Sullivan GM, Ogden RT, Oquendo MA, Kumar JSD, Simpson N, Huang Y yu, et al. Biol Psychiatry. 2009 Aug 1;66(3):223–30. PubMed Europe PMC Scholia
  80. SNP association and sequence analysis of the NOS1AP gene in SIDS. Osawa M, Kimura R, Hasegawa I, Mukasa N, Satoh F. Leg Med (Tokyo). 2009 Apr;11 Suppl 1:S307-8. PubMed Europe PMC Scholia
  81. Sudden infant death syndrome and sudden intrauterine unexplained death: correlation between hypoplasia of raphé nuclei and serotonin transporter gene promoter polymorphism. Lavezzi AM, Casale V, Oneda R, Weese-Mayer DE, Matturri L. Pediatr Res. 2009 Jul;66(1):22–7. PubMed Europe PMC Scholia
  82. Severe spontaneous bradycardia associated with respiratory disruptions in rat pups with fewer brain stem 5-HT neurons. Cummings KJ, Commons KG, Fan KC, Li A, Nattie EE. Am J Physiol Regul Integr Comp Physiol. 2009 Jun;296(6):R1783-96. PubMed Europe PMC Scholia
  83. Interleukin-6 and the serotonergic system of the medulla oblongata in the sudden infant death syndrome. Rognum IJ, Haynes RL, Vege A, Yang M, Rognum TO, Kinney HC. Acta Neuropathol. 2009 Oct;118(4):519–30. PubMed Europe PMC Scholia
  84. Dynamic chromatin remodeling events in hippocampal neurons are associated with NMDA receptor-mediated activation of Bdnf gene promoter 1. Tian F, Hu XZ, Wu X, Jiang H, Pan H, Marini AM, et al. J Neurochem. 2009 Jun;109(5):1375–88. PubMed Europe PMC Scholia
  85. Estrogen receptor beta regulates the expression of tryptophan-hydroxylase 2 mRNA within serotonergic neurons of the rat dorsal raphe nuclei. Donner N, Handa RJ. Neuroscience. 2009 Oct 6;163(2):705–18. PubMed Europe PMC Scholia
  86. GPD1L links redox state to cardiac excitability by PKC-dependent phosphorylation of the sodium channel SCN5A. Valdivia CR, Ueda K, Ackerman MJ, Makielski JC. Am J Physiol Heart Circ Physiol. 2009 Oct;297(4):H1446-52. PubMed Europe PMC Scholia
  87. Prenatal nicotine-exposure alters fetal autonomic activity and medullary neurotransmitter receptors: implications for sudden infant death syndrome. Duncan JR, Garland M, Myers MM, Fifer WP, Yang M, Kinney HC, et al. J Appl Physiol (1985). 2009 Nov;107(5):1579–90. PubMed Europe PMC Scholia
  88. Impact of sodium/proton exchanger 3 gene variants on sudden infant death syndrome. Poetsch M, Nottebaum BJ, Wingenfeld L, Frede S, Vennemann M, Bajanowski T. J Pediatr. 2010 Jan;156(1):44-48.e1. PubMed Europe PMC Scholia
  89. Mixed lineage kinase phosphorylates transcription factor E47 and inhibits TrkB expression to link neuronal death and survival pathways. Pedraza N, Rafel M, Navarro I, Encinas M, Aldea M, Gallego C. J Biol Chem. 2009 Nov 20;284(47):32980–8. PubMed Europe PMC Scholia
  90. Prostaglandin promotion of osteocyte gap junction function through transcriptional regulation of connexin 43 by glycogen synthase kinase 3/beta-catenin signaling. Xia X, Batra N, Shi Q, Bonewald LF, Sprague E, Jiang JX. Mol Cell Biol. 2010 Jan;30(1):206–19. PubMed Europe PMC Scholia
  91. Oncogenic BRAFV600E induces expression of neuronal differentiation marker MAP2 in melanoma cells by promoter demethylation and down-regulation of transcription repressor HES1. Maddodi N, Bhat KMR, Devi S, Zhang SC, Setaluri V. J Biol Chem. 2010 Jan 1;285(1):242–54. PubMed Europe PMC Scholia
  92. Cytokine gene polymorphisms and sudden infant death syndrome. Ferrante L, Opdal SH, Vege A, Rognum T. Acta Paediatr. 2010 Mar;99(3):384–8. PubMed Europe PMC Scholia
  93. Alpha1-syntrophin mutations identified in sudden infant death syndrome cause an increase in late cardiac sodium current. Cheng J, Van Norstrand DW, Medeiros-Domingo A, Valdivia C, Tan B hua, Ye B, et al. Circ Arrhythm Electrophysiol. 2009 Dec;2(6):667–76. PubMed Europe PMC Scholia
  94. IL-1 gene cluster polymorphisms and sudden infant death syndrome. Ferrante L, Opdal SH, Vege A, Rognum TO. Hum Immunol. 2010 Apr;71(4):402–6. PubMed Europe PMC Scholia
  95. Brainstem serotonergic deficiency in sudden infant death syndrome. Duncan JR, Paterson DS, Hoffman JM, Mokler DJ, Borenstein NS, Belliveau RA, et al. JAMA. 2010 Feb 3;303(5):430–7. PubMed Europe PMC Scholia
  96. A common FMO3 polymorphism may amplify the effect of nicotine exposure in sudden infant death syndrome (SIDS). Poetsch M, Czerwinski M, Wingenfeld L, Vennemann M, Bajanowski T. Int J Legal Med. 2010 Jul;124(4):301–6. PubMed Europe PMC Scholia
  97. Cardiac muscarinic receptor overexpression in sudden infant death syndrome. Livolsi A, Niederhoffer N, Dali-Youcef N, Rambaud C, Olexa C, Mokni W, et al. PLoS One. 2010 Mar 1;5(3):e9464. PubMed Europe PMC Scholia
  98. Sudden infant death syndrome-associated mutations in the sodium channel beta subunits. Tan BH, Pundi KN, Van Norstrand DW, Valdivia CR, Tester DJ, Medeiros-Domingo A, et al. Heart Rhythm. 2010 Jun;7(6):771–8. PubMed Europe PMC Scholia
  99. Aquaporin-4 gene variation and sudden infant death syndrome. Opdal SH, Vege A, Stray-Pedersen A, Rognum TO. Pediatr Res. 2010 Jul;68(1):48–51. PubMed Europe PMC Scholia
  100. miR-16 targets the serotonin transporter: a new facet for adaptive responses to antidepressants. Baudry A, Mouillet-Richard S, Schneider B, Launay JM, Kellermann O. Science. 2010 Sep 17;329(5998):1537–41. PubMed Europe PMC Scholia
  101. Variant interleukin 1 receptor antagonist gene alleles in sudden infant death syndrome. Highet AR, Gibson CS, Goldwater PN. Arch Dis Child. 2010 Dec;95(12):1009–12. PubMed Europe PMC Scholia
  102. Evidence for an association between infant mortality and a carnitine palmitoyltransferase 1A genetic variant. Gessner BD, Gillingham MB, Birch S, Wood T, Koeller DM. Pediatrics. 2010 Nov;126(5):945–51. PubMed Europe PMC Scholia
  103. Activation of tyrosine hydroxylase (TH) gene transcription induced by brain-derived neurotrophic factor (BDNF) and its selective inhibition through Ca(2+) signals evoked via the N-methyl-D-aspartate (NMDA) receptor. Fukuchi M, Fujii H, Takachi H, Ichinose H, Kuwana Y, Tabuchi A, et al. Brain Res. 2010 Dec 17;1366:18–26. PubMed Europe PMC Scholia
  104. Transcriptional Regulation of NMDA Receptor Expression. Bai G, Hoffman PW. In: Van Dongen AM, editor. Biology of the NMDA Receptor. Boca Raton (FL): CRC Press/Taylor & Francis; PubMed Europe PMC Scholia
  105. A hypoxia-induced positive feedback loop promotes hypoxia-inducible factor 1alpha stability through miR-210 suppression of glycerol-3-phosphate dehydrogenase 1-like. Kelly TJ, Souza AL, Clish CB, Puigserver P. Mol Cell Biol. 2011 Jul;31(13):2696–706. PubMed Europe PMC Scholia
  106. Transcriptional regulation of the Na⁺/H⁺ exchanger NHE3 by chronic exposure to angiotensin II in renal epithelial cells. Queiroz-Leite GD, Peruzzetto MC, Neri EA, Rebouças NA. Biochem Biophys Res Commun. 2011 Jun 10;409(3):470–6. PubMed Europe PMC Scholia
  107. Loss-of-function mutations in the KCNJ8-encoded Kir6.1 K(ATP) channel and sudden infant death syndrome. Tester DJ, Tan BH, Medeiros-Domingo A, Song C, Makielski JC, Ackerman MJ. Circ Cardiovasc Genet. 2011 Oct;4(5):510–5. PubMed Europe PMC Scholia
  108. Decreased GABAA receptor binding in the medullary serotonergic system in the sudden infant death syndrome. Broadbelt KG, Paterson DS, Belliveau RA, Trachtenberg FL, Haas EA, Stanley C, et al. J Neuropathol Exp Neurol. 2011 Sep;70(9):799–810. PubMed Europe PMC Scholia
  109. Brainstem deficiency of the 14-3-3 regulator of serotonin synthesis: a proteomics analysis in the sudden infant death syndrome. Broadbelt KG, Rivera KD, Paterson DS, Duncan JR, Trachtenberg FL, Paulo JA, et al. Mol Cell Proteomics. 2012 Jan;11(1):M111.009530. PubMed Europe PMC Scholia
  110. Effects of cigarette smoke exposure on nicotinic acetylcholine receptor subunits α7 and β2 in the sudden infant death syndrome (SIDS) brainstem. Machaalani R, Say M, Waters KA. Toxicol Appl Pharmacol. 2011 Dec 15;257(3):396–404. PubMed Europe PMC Scholia
  111. Connexin43 mutation causes heterogeneous gap junction loss and sudden infant death. Van Norstrand DW, Asimaki A, Rubinos C, Dolmatova E, Srinivas M, Tester DJ, et al. Circulation. 2012 Jan 24;125(3):474–81. PubMed Europe PMC Scholia
  112. Histone deacetylase 9 as a negative regulator for choline acetyltransferase gene in NG108-15 neuronal cells. Aizawa S, Teramoto K, Yamamuro Y. Neuroscience. 2012 Mar 15;205:63–72. PubMed Europe PMC Scholia
  113. MicroRNA-130a represses transcriptional activity of aquaporin 4 M1 promoter. Sepramaniam S, Ying LK, Armugam A, Wintour EM, Jeyaseelan K. J Biol Chem. 2012 Apr 6;287(15):12006–15. PubMed Europe PMC Scholia
  114. Association between a functional polymorphism in the MAOA gene and sudden infant death syndrome. Klintschar M, Heimbold C. Pediatrics. 2012 Mar;129(3):e756-61. PubMed Europe PMC Scholia
  115. Repressor element-1 silencing transcription factor (REST)-dependent epigenetic remodeling is critical to ischemia-induced neuronal death. Noh KM, Hwang JY, Follenzi A, Athanasiadou R, Miyawaki T, Greally JM, et al. Proc Natl Acad Sci U S A. 2012 Apr 17;109(16):E962-71. PubMed Europe PMC Scholia