SIDS susceptibility pathways (WP3130)
Bos taurus
In this model, we provide an integrated view of Sudden Infant Death Syndrome (SIDS) at the level of implicated tissues, signaling networks and genetics. The purpose of this model is to serve as an overview of research in this field and recommend new candidates for more focused or genome wide analyses. SIDS is the sudden and unexpected death of an infant (less than 1 year of age), almost always during deep sleep, where no cause of death can be found by autopsy. Factors that mediate SIDS are likely to be both biological and behavioral, such as sleeping position, environment and stress during a critical phase of infant development (http://www.nichd.nih.gov/health/topics/Sudden_Infant_Death_Syndrome.cfm). While no clear diagnostic markers currently exist, several polymorphisms have been identified which are significantly over-represented in distinct SIDS ethnic population. The large majority of these polymorphisms exist in genes associated with neuronal signaling, cardiac contraction and inflammatory response. These and other lines of evidence suggest that SIDS has a strong autonomic nervous system component (PMID:12350301, PMID: 20124538). One of the neuronal nuclei most strongly implicated in SIDS has been the raphe nucleus of the brain stem. In this nuclei there are ultrastructural, cellular and molecular changes associated with SIDS relative to controls (PMID:19342987, PMID: 20124538). This region of the brain is responsible for the large majority of neuronal serotonin produced and is functionally important in the regulation of normal cardiopulmonary activity, sleep and thermoregulation (see associated references). Genes associated with serotonin synthesis and receptivity have some of the strongest genetic association with SIDS. Principle among these genes the serotonin biosynthetic enzyme TPH2, the serotonin transporter SLC6A4 and the serotonin receptor HTR1A. SLC6A4 exhibits decreased expression in the raphe nucleus of the medulla oblongata and polymorphisms specifically associated with SIDS (PMID:19342987). In 75% of infants with SIDS, there is decreased HTR1A expression relative to controls along with an increase in the number of raphe serotonin neurons (PMID:19342987). Over-expression of the mouse orthologue of the HTR1A gene in the juvenile mouse medulla produces an analogous phenotype to SIDS with death due to bradycardia and hypothermia (PMID:18599790). These genes as well as those involved in serotonin synthesis are predicted to be transcriptionally regulated by a common factor, FEV (human orthologue of PET-1). PET-1 knock-out results in up to a 90% loss of serotonin neurons (PMID:12546819), while polymorphisms in FEV are over-represented in African American infants with SIDS. In addition to FEV, other transcription factors implicated in the regulation of these genes (Putative transcriptional regulators (TRs)) and FEV are also listed (see associated references). In addition to serotonin, vasopressin signaling and its regulation by serotonin appear to be important in a common pathway of cardiopulmonary regulation (PMID:2058745). A protein that associates with vasopressin signaling, named pituitary adenylate cyclase-activating polypeptide (ADCYAP1), results in a SIDS like phenotype, characterized by a high increase in spontaneous neonatal death, exacerbated by hypothermia and hypoxia (PMID:14608012), when disrupted in mice. Protein for this gene is widely distributed throughout the central nervous system (CNS), including autonomic control centers (PMID:12389210). ADCYAP1 and HTR1A are both predicted to be transcriptionally regulated by REST promoter binding. Regulation of G-protein coupled signaling pathways is illustrated for these genes, however, it is not clear whether ADCYAP1 acts directly upon raphe serotonin neurons. Another potentially important class of receptors in SIDS is nicotine. Receptors for nicotine are expressed in serotonin neurons of the raphe throughout development (PMID:18986852). Application of nicotine or cigarette smoke is sufficient to inhibit electrical activity of raphe serotonin neurons (PMID:17515803) and chronic nicotine infusion in rats decreases expression of SLC6A4 (PMID:18778441). Furthermore, nicotine exposure reduces both HTR1A and HTR2A immunoreactivity in several nuclei of the brainstem (PMID:17451658). In addition to CNS abnormalities, several studies have identified a critical link between cardiac arrhythmia (long QT syndrome) and SIDS (PMID:18928334). A number of genetic association studies identified functionally modifying mutations in critical cardiac channels in as many as 10% of all SIDS cases (PMID:18928334). These mutations have been predicted to predispose infants for long QT syndrome and sudden death. The highest proportion of SIDS associated mutations (both inherited and sporadic) is found in the sodium channel gene SCN5A. Examination of putative transcriptional regulators for these genes, highlights a diverse set of factors as well as a relatively common one (SP1). Finally, several miscellaneous mutations have been identified in genes associated with inflammatory response and thermoregulation. Infection is considered a significant risk factor for SIDS (PMID:19114412). For inflammatory associated genes, such as TNF alpha, interleukin 10 and complement component 4, many of these mutations are only significant in the presence of infection and SIDS. In addition to these mutations, cerebrospinal fluid levels of IL6 are increased in SIDS cases as well as IL6R levels in the arcuate nucleus of the brain, another major site of serotonin synthesis (PMID:19396608). Genes such as ILR6 and ADCYAP1 are also associated with autoimmune disorders, thus SIDS may also be associated with autoinflammation of autonomic centers in the brain. Regulation of thermogenesis by brown adipose tissue has been proposed be an important component of SIDS, given that SIDS incidence is highest in the winter time and that animal models of SIDS demonstrate variation in body temperature. Interestingly, activation of raphe HTR1A decreases both shivering and peripheral vasoconstriction in piglets (18094064). Although a putative significant polymorphism was identified in the thermoregulator gene HSP60, this only occurred in one SIDS case. It is important to note that in the large majority of all these studies, sleeping position and smoking were among the most significant risk factors for SIDS. In loving memory of Milo Salomonis (http://www.milosalomonis.org).
Authors
Martina Summer-Kutmon , Egon Willighagen , and Eric WeitzActivity
Discuss this pathway
Check for ongoing discussions or start your own.
Cited In
Are you planning to include this pathway in your next publication? See How to Cite and add a link here to your paper once it's online.
Organisms
Bos taurusCommunities
Annotations
Pathway Ontology
serotonin signaling pathwayDisease Ontology
sudden infant death syndromeCell Type Ontology
raphe nuclei neuron cardiac muscle cellLabel | Type | Compact URI | Comment |
---|---|---|---|
5-HT | Metabolite | hmdb:HMDB0000259 | |
L-Tryptophan | Metabolite | hmdb:HMDB0000929 | |
Nicotine | Metabolite | hmdb:HMDB0001934 | |
Fluoxetine | Metabolite | cas:54910-89-3 | |
5-HTP | Metabolite | hmdb:HMDB0000472 | |
5-HIAA | Metabolite | hmdb:HMDB0000763 | |
GABA | Metabolite | hmdb:HMDB0000112 | |
Glutamate | Metabolite | hmdb:HMDB0004135 | |
Dopamine | Metabolite | cas:62-31-7 | |
Phenylalanine | Metabolite | cas:63-91-2 | |
L-DOPA | Metabolite | cas:59-92-7 | |
Acetylcholine | Metabolite | cas:51-84-3 | |
Choline | Metabolite | cas:62-49-7 | |
Tyrosine | Metabolite | cas:60-18-4 | |
SCN5A | GeneProduct | ensembl:ENSBTAG00000009155 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:6331 |
NK1R | GeneProduct | ensembl:ENSBTAG00000015575 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000115353 |
ADCYAP1 | GeneProduct | ensembl:ENSBTAG00000020650 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:116 |
ALDOA | GeneProduct | ensembl:ENSBTAG00000012927 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000149925 |
IL10 | GeneProduct | ensembl:ENSBTAG00000006685 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:3586 |
TPH1 | GeneProduct | ensembl:ENSBTAG00000005343 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:7166 |
CREB1 | GeneProduct | ensembl:ENSBTAG00000005474 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000118260 |
SSTR2 | GeneProduct | ensembl:ENSBTAG00000017136 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000180616 |
MAOA | GeneProduct | ensembl:ENSBTAG00000016206 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:4128 |
GR-A | GeneProduct | ensembl:ENSBTAG00000019472 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000113580 |
SP1 | GeneProduct | ensembl:ENSBTAG00000003021 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:6667 |
HES1 | GeneProduct | ensembl:ENSBTAG00000000569 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:3280 |
ACADM | GeneProduct | ensembl:ENSBTAG00000024240 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:34 |
C4B | GeneProduct | ensembl:ENSBTAG00000006864 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:721 |
MGC157163 | GeneProduct | ensembl:ENSBTAG00000011789 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:5978 |
5HTR1A | GeneProduct | ensembl:ENSBTAG00000040439 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:3350 |
CC2D1A | GeneProduct | ensembl:ENSBTAG00000006068 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:54862 |
NFKB1 | GeneProduct | ensembl:ENSBTAG00000020270 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000109320 |
CTCF | GeneProduct | ensembl:ENSBTAG00000013757 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:10664 |
NKX3-1 | GeneProduct | ensembl:ENSBTAG00000001221 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:4824 |
HADHA | GeneProduct | ensembl:ENSBTAG00000015038 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:3030 |
RYR2 | GeneProduct | ensembl:ENSBTAG00000022886 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:6262 |
CHRNB4 | GeneProduct | ensembl:ENSBTAG00000003132 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:1143 |
TNF | GeneProduct | ensembl:ENSBTAG00000025471 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:7124 |
EP300 | GeneProduct | ensembl:ENSBTAG00000016198 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:2033 |
MEF2C | GeneProduct | ensembl:ENSBTAG00000020701 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000081189 |
NGF | GeneProduct | ensembl:ENSBTAG00000007446 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000134259 |
bta-mir-16a | GeneProduct | ensembl:ENSBTAG00000036389 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:406950 |
PLP1 | GeneProduct | ensembl:ENSBTAG00000006977 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000123560 |
C4A | GeneProduct | ensembl:ENSBTAG00000006864 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:720 |
bta-mir-130a | GeneProduct | ensembl:ENSBTAG00000030122 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000208009 |
RUNX3 | GeneProduct | ensembl:ENSBTAG00000019800 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000020633 |
NEUROD1 | GeneProduct | ensembl:ENSBTAG00000001755 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000162992 |
HIF1A | GeneProduct | ensembl:ENSBTAG00000020935 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000100644 |
DLX2 | GeneProduct | ensembl:ENSBTAG00000005741 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000115844 |
JUN | GeneProduct | ensembl:ENSBTAG00000004037 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000177606 |
GATA2 | GeneProduct | ensembl:ENSBTAG00000019707 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:2624 |
bta-mir-210 | GeneProduct | ensembl:ENSBTAG00000046437 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000199038 |
CREBBP | GeneProduct | ensembl:ENSBTAG00000026403 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000005339 |
KCNH2 | GeneProduct | ensembl:ENSBTAG00000004078 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:3757 |
DDC | GeneProduct | ensembl:ENSBTAG00000020869 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:1644 |
SP3 | GeneProduct | ensembl:ENSBTAG00000000176 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000172845 |
CAV3 | GeneProduct | ensembl:ENSBTAG00000022699 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:859 |
CXCL8 | GeneProduct | ensembl:ENSBTAG00000019716 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:3576 |
AVP | GeneProduct | ensembl:ENSBTAG00000008027 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:551 |
ADCYAP1R1 | GeneProduct | ensembl:ENSBTAG00000020247 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:117 |
PPARGC1A | GeneProduct | ensembl:ENSBTAG00000017024 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:10891 |
THRB | GeneProduct | ensembl:ENSBTAG00000017802 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000151090 |
PPARGC1B | GeneProduct | ensembl:ENSBTAG00000012943 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:133522 |
MGC157163 | GeneProduct | ensembl:ENSBTAG00000011789 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000084093 |
LMX1B | GeneProduct | ensembl:ENSBTAG00000010228 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:4010 |
HES1 | GeneProduct | ensembl:ENSBTAG00000000569 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000114315 |
CHRNA4 | GeneProduct | ensembl:ENSBTAG00000017198 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:1137 |
NFYA | GeneProduct | ensembl:ENSBTAG00000009905 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:4800 |
KCNQ1 | GeneProduct | ensembl:ENSBTAG00000010986 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:3784 |
ASCL1 | GeneProduct | ensembl:ENSBTAG00000016227 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:429 |
ESR2 | GeneProduct | ensembl:ENSBTAG00000004498 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:2100 |
BHLHE40 | GeneProduct | ensembl:ENSBTAG00000009863 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000134107 |
RORA | GeneProduct | ensembl:ENSBTAG00000015904 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:6095 |
HTR2A | GeneProduct | ensembl:ENSBTAG00000013498 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:3356 |
SP1 | GeneProduct | ensembl:ENSBTAG00000003021 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000185591 |
VIPR2 | GeneProduct | ensembl:ENSBTAG00000037649 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:7434 |
EN1 | GeneProduct | ensembl:ENSBTAG00000021494 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:2019 |
TCF3 | GeneProduct | ensembl:ENSBTAG00000008695 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000071564 |
IL6 | GeneProduct | ensembl:ENSBTAG00000014921 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:3569 |
YBX1 | GeneProduct | ensembl:ENSBTAG00000017368 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:4904 |
GATA3 | GeneProduct | ensembl:ENSBTAG00000017243 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:2625 |
VIPR1 | GeneProduct | ensembl:ENSBTAG00000006567 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:7433 |
TPH2 | GeneProduct | ensembl:ENSBTAG00000020792 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:121278 |
SLC6A4 | GeneProduct | ensembl:ENSBTAG00000019349 | Contains an alternative promoter in the first and possibly second intron.HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:6532 |
TP73 | GeneProduct | ensembl:ENSBTAG00000005812 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000078900 |
CDCA7L | GeneProduct | ensembl:ENSBTAG00000004976 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:55536 |
HSPD1 | GeneProduct | ensembl:ENSBTAG00000012586 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:3329 |
POU3F2 | GeneProduct | ensembl:ENSBTAG00000024773 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:5454 |
FEV | GeneProduct | ensembl:ENSBTAG00000020191 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:54738 |
SSTR1 | GeneProduct | ensembl:ENSBTAG00000006582 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000139874 |
ECE1 | GeneProduct | ensembl:ENSBTAG00000002977 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:1889 |
GNB3 | GeneProduct | ensembl:ENSBTAG00000016043 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:2784 |
PKNOX1 | GeneProduct | ensembl:ENSBTAG00000014153 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000160199 |
AR | GeneProduct | ensembl:ENSBTAG00000022255 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:367 |
PBX1 | GeneProduct | ensembl:ENSBTAG00000013801 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000185630 |
FOXM1 | GeneProduct | ensembl:ENSBTAG00000015875 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:2305 |
IL6R | GeneProduct | ensembl:ENSBTAG00000018474 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:3570 |
CREB1 | GeneProduct | ensembl:ENSBTAG00000005474 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:1385 |
GR-A | GeneProduct | ensembl:ENSBTAG00000019472 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:2908 |
PHOX2A | GeneProduct | ensembl:ENSBTAG00000019168 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:401 |
RET | GeneProduct | ensembl:ENSBTAG00000000570 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:5979 |
HES5 | GeneProduct | ensembl:ENSBTAG00000002483 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:388585 |
TLX3 | GeneProduct | ensembl:ENSBTAG00000010003 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:30012 |
NFKB1 | GeneProduct | ensembl:ENSBTAG00000020270 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:4790 |
NKX2-2 | GeneProduct | ensembl:ENSBTAG00000010277 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:4821 |
EGR1 | GeneProduct | ensembl:ENSBTAG00000010069 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000120738 |
PHOX2B | GeneProduct | ensembl:ENSBTAG00000044166 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:8929 |
CTNNB1 | GeneProduct | ensembl:ENSBTAG00000016420 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000168036 |
SOX2 | GeneProduct | ensembl:ENSBTAG00000011598 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000181449 |
NANOG | GeneProduct | ensembl:ENSBTAG00000020916 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000111704 |
POU5F1 | GeneProduct | ensembl:ENSBTAG00000001873 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000204531 |
BDNF | GeneProduct | ensembl:ENSBTAG00000008134 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000176697 |
NTRK2 | GeneProduct | ensembl:ENSBTAG00000010647 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:4915 |
GABRA1 | GeneProduct | ensembl:ENSBTAG00000030286 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:2554 |
CHRM2 | GeneProduct | ensembl:ENSBTAG00000014674 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:1129 |
GJA1 | GeneProduct | ensembl:ENSBTAG00000001835 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000152661 |
SNTA1 | GeneProduct | ensembl:ENSBTAG00000000512 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:6640 |
KCNJ8 | GeneProduct | ensembl:ENSBTAG00000002551 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:3764 |
PRKAR2B | GeneProduct | ensembl:ENSBTAG00000014958 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:5577 |
YWHAE | GeneProduct | ensembl:ENSBTAG00000005664 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:7531 |
YWHAZ | GeneProduct | ensembl:ENSBTAG00000000236 | PMID: 9861170 PMID: 1317796HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:7534 |
PRKAR1B | GeneProduct | ensembl:ENSBTAG00000046142 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:5575 |
PRKAR2A | GeneProduct | ensembl:ENSBTAG00000014205 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:5576 |
YWHAQ | GeneProduct | ensembl:ENSBTAG00000002108 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:10971 |
YWHAG | GeneProduct | ensembl:ENSBTAG00000004077 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:7532 |
PRKAR1A | GeneProduct | ensembl:ENSBTAG00000008621 | KAP0 HUMANHomologyConvert: Homo sapiens to Bos taurus: Original ID = L:5573 |
YWHAH | GeneProduct | ensembl:ENSBTAG00000011631 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:7533 |
YWHAB | GeneProduct | ensembl:ENSBTAG00000016846 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:7529 |
PRKACB | GeneProduct | ensembl:ENSBTAG00000011953 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:5567 |
PRKACA | GeneProduct | ensembl:ENSBTAG00000006642 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:5566 |
SLC9A3 | GeneProduct | ensembl:ENSBTAG00000004629 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:6550 |
CASP3 | GeneProduct | ensembl:ENSBTAG00000015874 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000164305 |
FMO3 | GeneProduct | ensembl:ENSBTAG00000020597 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000007933 |
G6PC | GeneProduct | ensembl:ENSBTAG00000010184 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000131482 |
GCK | GeneProduct | ensembl:ENSBTAG00000032288 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000106633 |
GPD1L | GeneProduct | ensembl:ENSBTAG00000009826 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000152642 |
GRIN1 | GeneProduct | ensembl:ENSBTAG00000047202 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000176884 |
HADHB | GeneProduct | ensembl:ENSBTAG00000010083 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000138029 |
HTR3A | GeneProduct | ensembl:ENSBTAG00000010791 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000166736 |
SCN3B | GeneProduct | ensembl:ENSBTAG00000016768 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000166257 |
SCN4B | GeneProduct | ensembl:ENSBTAG00000039340 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000177098 |
SST | GeneProduct | ensembl:ENSBTAG00000017312 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000157005 |
AQP4 | GeneProduct | ensembl:ENSBTAG00000019037 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000171885 |
CPT1A | GeneProduct | ensembl:ENSBTAG00000021999 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000110090 |
IL1A | GeneProduct | ensembl:ENSBTAG00000010349 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000115008 |
IL1B | GeneProduct | ensembl:ENSBTAG00000001321 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000125538 |
IL1RN | GeneProduct | ensembl:ENSBTAG00000019665 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000136689 |
IL13 | GeneProduct | ensembl:ENSBTAG00000015953 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000169194 |
TSPYL1 | GeneProduct | ensembl:ENSBTAG00000010885 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000189241 |
VEGFA | GeneProduct | ensembl:ENSBTAG00000047561 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000112715 |
CHAT | GeneProduct | ensembl:ENSBTAG00000016814 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000070748 |
PAH | GeneProduct | ensembl:ENSBTAG00000012794 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:5053 |
TH | GeneProduct | ensembl:ENSBTAG00000026768 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000180176 |
NOS1AP | GeneProduct | ensembl:ENSBTAG00000010158 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000198929 |
MAP-2 | GeneProduct | ensembl:ENSBTAG00000018130 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000078018 |
TAC1 | GeneProduct | ensembl:ENSBTAG00000015356 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000006128 |
SLC1A3 | GeneProduct | ensembl:ENSBTAG00000018245 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000079215 |
SLC25A4 | GeneProduct | ensembl:ENSBTAG00000013208 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000151729 |
SNAP25 | GeneProduct | ensembl:ENSBTAG00000008323 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000132639 |
NFKB2 | GeneProduct | ensembl:ENSBTAG00000006017 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000077150 |
HDAC9 | GeneProduct | ensembl:ENSBTAG00000003808 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000048052 |
MYB | GeneProduct | ensembl:ENSBTAG00000012074 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000118513 |
POU2F2 | GeneProduct | ensembl:ENSBTAG00000008556 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000028277 |
CREM | GeneProduct | ensembl:ENSBTAG00000016060 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000095794 |
CHRNB2 | GeneProduct | ensembl:ENSBTAG00000007517 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:1141 |
CHRNA7 | GeneProduct | ensembl:ENSBTAG00000015775 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000175344 |
HDAC1 | GeneProduct | ensembl:ENSBTAG00000012698 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000116478 |
MBD1 | GeneProduct | ensembl:ENSBTAG00000003801 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000141644 |
MECP2 | GeneProduct | ensembl:ENSBTAG00000047855 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000169057 |
VAMP2 | GeneProduct | ensembl:ENSBTAG00000003891 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000220205 |
TPPP | GeneProduct | ensembl:ENSBTAG00000047116 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000171368 |
ATP1A3 | GeneProduct | ensembl:ENSBTAG00000018635 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000105409 |
GAPDH | GeneProduct | ensembl:ENSBTAG00000018554 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000111640 |
HSP90B1 | GeneProduct | ensembl:ENSBTAG00000003362 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000166598 |
TF | GeneProduct | ensembl:ENSBTAG00000007273 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000091513 |
SPTBN1 | GeneProduct | ensembl:ENSBTAG00000006995 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000115306 |
YWHAG | GeneProduct | ensembl:ENSBTAG00000004077 | HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000170027 |
References
- Vasopressin and autonomic mechanisms mediate cardiovascular actions of central serotonin. Pérgola PE, Alper RH. Am J Physiol. 1991 Jun;260(6 Pt 2):R1188-93. PubMed Europe PMC Scholia
- Mouse alpha 1- and beta 2-syntrophin gene structure, chromosome localization, and homology with a discs large domain. Adams ME, Dwyer TM, Dowler LL, White RA, Froehner SC. J Biol Chem. 1995 Oct 27;270(43):25859–65. PubMed Europe PMC Scholia
- Positive and negative effects of nuclear receptors on transcription activation by AP-1 of the human choline acetyltransferase proximal promoter. Schmitt M, Bausero P, Simoni P, Queuche D, Geoffroy V, Marschal C, et al. J Neurosci Res. 1995 Feb 1;40(2):152–64. PubMed Europe PMC Scholia
- The Oct-2 transcription factor represses tyrosine hydroxylase expression via a heptamer TAATGARAT-like motif in the gene promoter. Dawson SJ, Yoon SO, Chikaraishi DM, Lillycrop KA, Latchman DS. Nucleic Acids Res. 1994 Mar 25;22(6):1023–8. PubMed Europe PMC Scholia
- Cloning and characterization of the 5’-upstream regulatory region of the Ca(2+)-release channel gene of cardiac sarcoplasmic reticulum. Nishida K, Otsu K, Hori M, Kuzuya T, Tada M. Eur J Biochem. 1996 Sep 1;240(2):408–15. PubMed Europe PMC Scholia
- Human heat shock protein gene polymorphisms and sudden infant death syndrome. Rahim RA, Boyd PA, Ainslie Patrick WJ, Burdon RH. Arch Dis Child. 1996 Nov;75(5):451–2. PubMed Europe PMC Scholia
- Tyrosine hydroxylase gene promoter activity is regulated by both cyclic AMP-responsive element and AP1 sites following calcium influx. Evidence for cyclic amp-responsive element binding protein-independent regulation. Nagamoto-Combs K, Piech KM, Best JA, Sun B, Tank AW. J Biol Chem. 1997 Feb 28;272(9):6051–8. PubMed Europe PMC Scholia
- Genomic and mutational analysis of the mitochondrial trifunctional protein beta-subunit (HADHB) gene in patients with trifunctional protein deficiency. Orii KE, Aoyama T, Wakui K, Fukushima Y, Miyajima H, Yamaguchi S, et al. Hum Mol Genet. 1997 Aug;6(8):1215–24. PubMed Europe PMC Scholia
- Winged helix hepatocyte nuclear factor 3 and POU-domain protein brn-2/N-oct-3 bind overlapping sites on the neuronal promoter of human aromatic L-amino acid decarboxylase gene. Raynal JF, Dugast C, Le Van Thaï A, Weber MJ. Brain Res Mol Brain Res. 1998 May;56(1–2):227–37. PubMed Europe PMC Scholia
- CBF/NF-Y activates transcription of the human tryptophan hydroxylase gene through an inverted CCAAT box. Teerawatanasuk N, Carr LG. Brain Res Mol Brain Res. 1998 Mar 30;55(1):61–70. PubMed Europe PMC Scholia
- Isolation and functional analysis of alternative promoters in the human aquaporin-4 water channel gene. Umenishi F, Verkman AS. Genomics. 1998 Jun 15;50(3):373–7. PubMed Europe PMC Scholia
- Functional and cooperative interactions between the homeodomain PDX1, Pbx, and Prep1 factors on the somatostatin promoter. Goudet G, Delhalle S, Biemar F, Martial JA, Peers B. J Biol Chem. 1999 Feb 12;274(7):4067–73. PubMed Europe PMC Scholia
- The complement component C4 in sudden infant death. Opdal SH, Vege A, Stave AK, Rognum TO. Eur J Pediatr. 1999 Mar;158(3):210–2. PubMed Europe PMC Scholia
- Reduction in choline acetyltransferase immunoreactivity but not muscarinic-m2 receptor immunoreactivity in the brainstem of SIDS infants. Mallard C, Tolcos M, Leditschke J, Campbell P, Rees S. J Neuropathol Exp Neurol. 1999 Mar;58(3):255–64. PubMed Europe PMC Scholia
- Localization of regulatory protein binding sites in the proximal region of human myometrial connexin 43 gene. Echetebu CO, Ali M, Izban MG, MacKay L, Garfield RE. Mol Hum Reprod. 1999 Aug;5(8):757–66. PubMed Europe PMC Scholia
- The ETS domain factor Pet-1 is an early and precise marker of central serotonin neurons and interacts with a conserved element in serotonergic genes. Hendricks T, Francis N, Fyodorov D, Deneris ES. J Neurosci. 1999 Dec 1;19(23):10348–56. PubMed Europe PMC Scholia
- Transcriptional repression of neurotrophin receptor trkB by thyroid hormone in the developing rat brain. Pombo PM, Barettino D, Espliguero G, Metsis M, Iglesias T, Rodriguez-Pena A. J Biol Chem. 2000 Dec 1;275(48):37510–7. PubMed Europe PMC Scholia
- Nuclear factor kappaB/p49 is a negative regulatory factor in nerve growth factor-induced choline acetyltransferase promoter activity in PC12 cells. Toliver-Kinsky T, Wood T, Perez-Polo JR. J Neurochem. 2000 Dec;75(6):2241–51. PubMed Europe PMC Scholia
- Involvement of NF-Y and Sp1 in basal and cAMP-stimulated transcriptional activation of the tryptophan hydroxylase (TPH ) gene in the pineal gland. Côté F, Schussler N, Boularand S, Peirotes A, Thévenot E, Mallet J, et al. J Neurochem. 2002 May;81(4):673–85. PubMed Europe PMC Scholia
- Synergistic activation of the human choline acetyltransferase gene by c-Myb and C/EBPbeta. Robert I, Sutter A, Quirin-Stricker C. Brain Res Mol Brain Res. 2002 Oct 15;106(1–2):124–35. PubMed Europe PMC Scholia
- NMDA receptor 1 expression in the brainstem of human infants and its relevance to the sudden infant death syndrome (SIDS). Machaalani R, Waters KA. J Neuropathol Exp Neurol. 2003 Oct;62(10):1076–85. PubMed Europe PMC Scholia
- Sudden neonatal death in PACAP-deficient mice is associated with reduced respiratory chemoresponse and susceptibility to apnoea. Cummings KJ, Pendlebury JD, Sherwood NM, Wilson RJA. J Physiol. 2004 Feb 15;555(Pt 1):15–26. PubMed Europe PMC Scholia
- The correlation between microtubule-associated protein 2 in the brainstem of SIDS victims and physiological data on sleep apnea. Sawaguchi T, Patricia F, Kadhim H, Groswasser J, Sottiaux M, Nishida H, et al. Early Hum Dev. 2003 Dec;75 Suppl:S87-97. PubMed Europe PMC Scholia
- Cooperative dimerization of the POU domain protein Brn-2 on a new motif activates the neuronal promoter of the human aromatic L-amino acid decarboxylase gene. Dugast-Darzacq C, Egloff S, Weber MJ. Brain Res Mol Brain Res. 2004 Jan 5;120(2):151–63. PubMed Europe PMC Scholia
- Cell type-dependent recruitment of trichostatin A-sensitive repression of the human 5-HT1A receptor gene. Lemonde S, Rogaeva A, Albert PR. J Neurochem. 2004 Feb;88(4):857–68. PubMed Europe PMC Scholia
- The regulatory mechanism for neuron specific expression of PACAP gene. Miyata A, Sugawara H, Iwata S ichi, Shimizu T, Kangawa K. Nihon Yakurigaku Zasshi. 2004 Apr;123(4):235–42. PubMed Europe PMC Scholia
- RORalpha regulates the expression of genes involved in lipid homeostasis in skeletal muscle cells: caveolin-3 and CPT-1 are direct targets of ROR. Lau P, Nixon SJ, Parton RG, Muscat GEO. J Biol Chem. 2004 Aug 27;279(35):36828–40. PubMed Europe PMC Scholia
- Sudden infant death syndrome: case-control frequency differences at genes pertinent to early autonomic nervous system embryologic development. Weese-Mayer DE, Berry-Kravis EM, Zhou L, Maher BS, Curran ME, Silvestri JM, et al. Pediatr Res. 2004 Sep;56(3):391–5. PubMed Europe PMC Scholia
- Mapping of sudden infant death with dysgenesis of the testes syndrome (SIDDT) by a SNP genome scan and identification of TSPYL loss of function. Puffenberger EG, Hu-Lince D, Parod JM, Craig DW, Dobrin SE, Conway AR, et al. Proc Natl Acad Sci U S A. 2004 Aug 10;101(32):11689–94. PubMed Europe PMC Scholia
- Role of somatostatin and apoptosis in breathing control in sudden perinatal and infant unexplained death. Lavezzi AM, Ottaviani G, Matturri L. Clin Neuropathol. 2004;23(6):304–10. PubMed Europe PMC Scholia
- A differentially autoregulated Pet-1 enhancer region is a critical target of the transcriptional cascade that governs serotonin neuron development. Scott MM, Krueger KC, Deneris ES. J Neurosci. 2005 Mar 9;25(10):2628–36. PubMed Europe PMC Scholia
- Identification of novel polymorphisms in the glucokinase and glucose-6-phosphatase genes in infants who died suddenly and unexpectedly. Forsyth L, Hume R, Howatson A, Busuttil A, Burchell A. J Mol Med (Berl). 2005 Aug;83(8):610–8. PubMed Europe PMC Scholia
- Transcriptional regulation of neuronal genes and its effect on neural functions: cumulative mRNA expression of PACAP and BDNF genes controlled by calcium and cAMP signals in neurons. Fukuchi M, Tabuchi A, Tsuda M. J Pharmacol Sci. 2005 Jul;98(3):212–8. PubMed Europe PMC Scholia
- Increased serotonin receptor availability in human sleep: evidence from an [18F]MPPF PET study in narcolepsy. Derry C, Benjamin C, Bladin P, le Bars D, Tochon-Danguy H, Berkovic SF, et al. Neuroimage. 2006 Apr 1;30(2):341–8. PubMed Europe PMC Scholia
- Cell-specific repressor or enhancer activities of Deaf-1 at a serotonin 1A receptor gene polymorphism. Czesak M, Lemonde S, Peterson EA, Rogaeva A, Albert PR. J Neurosci. 2006 Feb 8;26(6):1864–71. PubMed Europe PMC Scholia
- Glucocorticoid and androgen activation of monoamine oxidase A is regulated differently by R1 and Sp1. Ou XM, Chen K, Shih JC. J Biol Chem. 2006 Jul 28;281(30):21512–25. PubMed Europe PMC Scholia
- Regulation of human tyrosine hydroxylase gene by neuron-restrictive silencer factor. Kim SM, Yang JW, Park MJ, Lee JK, Kim SU, Lee YS, et al. Biochem Biophys Res Commun. 2006 Jul 28;346(2):426–35. PubMed Europe PMC Scholia
- Sudden infant death syndrome: Case-control frequency differences in paired like homeobox (PHOX) 2B gene. Rand CM, Weese-Mayer DE, Zhou L, Maher BS, Cooper ME, Marazita ML, et al. Am J Med Genet A. 2006 Aug 1;140(15):1687–91. PubMed Europe PMC Scholia
- Comparisons between transcriptional regulation and RNA expression in human embryonic stem cell lines. Player A, Wang Y, Bhattacharya B, Rao M, Puri RK, Kawasaki ES. Stem Cells Dev. 2006 Jun;15(3):315–23. PubMed Europe PMC Scholia
- Association of sudden infant death syndrome with VEGF and IL-6 gene polymorphisms. Dashash M, Pravica V, Hutchinson IV, Barson AJ, Drucker DB. Hum Immunol. 2006 Aug;67(8):627–33. PubMed Europe PMC Scholia
- Transcriptional regulation of human MAP2 gene in melanoma: role of neuronal bHLH factors and Notch1 signaling. Bhat KMR, Maddodi N, Shashikant C, Setaluri V. Nucleic Acids Res. 2006 Aug 11;34(13):3819–32. PubMed Europe PMC Scholia
- The G protein beta3 subunit 825C allele is associated with sudden infant death due to infection. Hauge Opdal S, Melien Ø, Rootwelt H, Vege A, Arnestad M, Ole Rognum T. Acta Paediatr. 2006 Sep;95(9):1129–32. PubMed Europe PMC Scholia
- Multiple serotonergic brainstem abnormalities in sudden infant death syndrome. Paterson DS, Trachtenberg FL, Thompson EG, Belliveau RA, Beggs AH, Darnall R, et al. JAMA. 2006 Nov 1;296(17):2124–32. PubMed Europe PMC Scholia
- Evidence of HIF-1 functional binding activity to caspase-3 promoter after photothrombotic cerebral ischemia. Van Hoecke M, Prigent-Tessier AS, Garnier PE, Bertrand NM, Filomenko R, Bettaieb A, et al. Mol Cell Neurosci. 2007 Jan;34(1):40–7. PubMed Europe PMC Scholia
- Overexpression HERG K(+) channel gene mediates cell-growth signals on activation of oncoproteins SP1 and NF-kappaB and inactivation of tumor suppressor Nkx3.1. Lin H, Xiao J, Luo X, Wang H, Gao H, Yang B, et al. J Cell Physiol. 2007 Jul;212(1):137–47. PubMed Europe PMC Scholia
- Genetic variation in hepatic glucose-6-phosphatase system genes in cases of sudden infant death syndrome. Forsyth L, Scott HM, Howatson A, Busuttil A, Hume R, Burchell A. J Pathol. 2007 May;212(1):112–20. PubMed Europe PMC Scholia
- Differential regulation of the serotonin transporter gene by lithium is mediated by transcription factors, CCCTC binding protein and Y-box binding protein 1, through the polymorphic intron 2 variable number tandem repeat. Roberts J, Scott AC, Howard MR, Breen G, Bubb VJ, Klenova E, et al. J Neurosci. 2007 Mar 14;27(11):2793–801. PubMed Europe PMC Scholia
- Hypoxia-inducible factor-1 (HIF-1) is a transcriptional activator of the TrkB neurotrophin receptor gene. Martens LK, Kirschner KM, Warnecke C, Scholz H. J Biol Chem. 2007 May 11;282(19):14379–88. PubMed Europe PMC Scholia
- Ca2+, CREB and krüppel: a novel KLF7-binding element conserved in mouse and human TRKB promoters is required for CREB-dependent transcription. Kingsbury TJ, Krueger BK. Mol Cell Neurosci. 2007 Jul;35(3):447–55. PubMed Europe PMC Scholia
- A mechanism for sudden infant death syndrome (SIDS): stress-induced leak via ryanodine receptors. Tester DJ, Dura M, Carturan E, Reiken S, Wronska A, Marks AR, et al. Heart Rhythm. 2007 Jun;4(6):733–9. PubMed Europe PMC Scholia
- Characterization of a functional promoter polymorphism of the human tryptophan hydroxylase 2 gene in serotonergic raphe neurons. Scheuch K, Lautenschlager M, Grohmann M, Stahlberg S, Kirchheiner J, Zill P, et al. Biol Psychiatry. 2007 Dec 1;62(11):1288–94. PubMed Europe PMC Scholia
- The transcription factor Runx3 represses the neurotrophin receptor TrkB during lineage commitment of dorsal root ganglion neurons. Inoue K ichi, Ito K, Osato M, Lee B, Bae SC, Ito Y. J Biol Chem. 2007 Aug 17;282(33):24175–84. PubMed Europe PMC Scholia
- Sudden infant death syndrome: rare mutation in the serotonin system FEV gene. Rand CM, Berry-Kravis EM, Zhou L, Fan W, Weese-Mayer DE. Pediatr Res. 2007 Aug;62(2):180–2. PubMed Europe PMC Scholia
- Regulation of tryptophan hydroxylase-2 gene expression by a bipartite RE-1 silencer of transcription/neuron restrictive silencing factor (REST/NRSF) binding motif. Patel PD, Bochar DA, Turner DL, Meng F, Mueller HM, Pontrello CG. J Biol Chem. 2007 Sep 14;282(37):26717–24. PubMed Europe PMC Scholia
- Synergy between the RE-1 silencer of transcription and NFkappaB in the repression of the neurotransmitter gene TAC1 in human mesenchymal stem cells. Greco SJ, Smirnov SV, Murthy RG, Rameshwar P. J Biol Chem. 2007 Oct 12;282(41):30039–50. PubMed Europe PMC Scholia
- 5-HT(2) receptor subtypes mediate different long-term changes in GABAergic activity to parasympathetic cardiac vagal neurons in the nucleus ambiguus. Dergacheva O, Griffioen KJS, Wang X, Kamendi H, Gorini C, Mendelowitz D. Neuroscience. 2007 Nov 9;149(3):696–705. PubMed Europe PMC Scholia
- Activation and stabilization of human tryptophan hydroxylase 2 by phosphorylation and 14-3-3 binding. Winge I, McKinney JA, Ying M, D’Santos CS, Kleppe R, Knappskog PM, et al. Biochem J. 2008 Feb 15;410(1):195–204. PubMed Europe PMC Scholia
- NF-kappaB-dependent transcriptional regulation of the cardiac scn5a sodium channel by angiotensin II. Shang LL, Sanyal S, Pfahnl AE, Jiao Z, Allen J, Liu H, et al. Am J Physiol Cell Physiol. 2008 Jan;294(1):C372-9. PubMed Europe PMC Scholia
- Post-mortem analysis for two prevalent beta-oxidation mutations in sudden infant death. Yang Z, Lantz PE, Ibdah JA. Pediatr Int. 2007 Dec;49(6):883–7. PubMed Europe PMC Scholia
- Neuronal cell death in the Sudden Infant Death Syndrome brainstem and associations with risk factors. Machaalani R, Waters KA. Brain. 2008 Jan;131(Pt 1):218–28. PubMed Europe PMC Scholia
- NHE3 in the human brainstem: implication for the pathogenesis of the sudden infant death syndrome (SIDS)? Wiemann M, Frede S, Tschentscher F, Kiwull-Schöne H, Kiwull P, Bingmann D, et al. Adv Exp Med Biol. 2008;605:508–13. PubMed Europe PMC Scholia
- Activation of 5-HT1A receptors in medullary raphé disrupts sleep and decreases shivering during cooling in the conscious piglet. Brown JW, Sirlin EA, Benoit AM, Hoffman JM, Darnall RA. Am J Physiol Regul Integr Comp Physiol. 2008 Mar;294(3):R884-94. PubMed Europe PMC Scholia
- Surface expression of GABAA receptors is transcriptionally controlled by the interplay of cAMP-response element-binding protein and its binding partner inducible cAMP early repressor. Hu Y, Lund IV, Gravielle MC, Farb DH, Brooks-Kayal AR, Russek SJ. J Biol Chem. 2008 Apr 4;283(14):9328–40. PubMed Europe PMC Scholia
- Genomic structure, transcriptional control, and tissue distribution of HERG1 and KCNQ1 genes. Luo X, Xiao J, Lin H, Lu Y, Yang B, Wang Z. Am J Physiol Heart Circ Physiol. 2008 Mar;294(3):H1371-80. PubMed Europe PMC Scholia
- BHLHB2 controls Bdnf promoter 4 activity and neuronal excitability. Jiang X, Tian F, Du Y, Copeland NG, Jenkins NA, Tessarollo L, et al. J Neurosci. 2008 Jan 30;28(5):1118–30. PubMed Europe PMC Scholia
- Sp1-like sequences mediate human caspase-3 promoter activation by p73 and cisplatin. Sudhakar C, Jain N, Swarup G. FEBS J. 2008 May;275(9):2200–13. PubMed Europe PMC Scholia
- A functional polymorphism in the tyrosine hydroxylase gene indicates a role of noradrenalinergic signaling in sudden infant death syndrome. Klintschar M, Reichenpfader B, Saternus KS. J Pediatr. 2008 Aug;153(2):190–3. PubMed Europe PMC Scholia
- TNF-alpha promoter polymorphisms in sudden infant death. Ferrante L, Opdal SH, Vege A, Rognum TO. Hum Immunol. 2008 Jun;69(6):368–73. PubMed Europe PMC Scholia
- Sporadic autonomic dysregulation and death associated with excessive serotonin autoinhibition. Audero E, Coppi E, Mlinar B, Rossetti T, Caprioli A, Banchaabouchi MA, et al. Science. 2008 Jul 4;321(5885):130–3. PubMed Europe PMC Scholia
- TNF-alpha and IL-10 gene polymorphisms versus cardioimmunological responses in sudden infant death. Perskvist N, Skoglund K, Edston E, Bäckström G, Lodestad I, Palm U. Fetal Pediatr Pathol. 2008;27(3):149–65. PubMed Europe PMC Scholia
- Transcriptional regulation at a HTR1A polymorphism associated with mental illness. Le François B, Czesak M, Steubl D, Albert PR. Neuropharmacology. 2008 Nov;55(6):977–85. PubMed Europe PMC Scholia
- PHOX2B mutations and ventilatory control. Gallego J, Dauger S. Respir Physiol Neurobiol. 2008 Dec 10;164(1–2):49–54. PubMed Europe PMC Scholia
- Chronic effect of nicotine on serotonin transporter mRNA in the raphe nucleus of rats: reversal by co-administration of bupropion. Semba J, Wakuta M. Psychiatry Clin Neurosci. 2008 Aug;62(4):435–41. PubMed Europe PMC Scholia
- Association between the G1001C polymorphism in the GRIN1 gene promoter and schizophrenia in the Iranian population. Galehdari H, Pooryasin A, Foroughmand A, Daneshmand S, Saadat M. J Mol Neurosci. 2009 Jun;38(2):178–81. PubMed Europe PMC Scholia
- Association of dopamine transporter and monoamine oxidase molecular polymorphisms with sudden infant death syndrome and stillbirth: new insights into the serotonin hypothesis. Filonzi L, Magnani C, Lavezzi AM, Rindi G, Parmigiani S, Bevilacqua G, et al. Neurogenetics. 2009 Feb;10(1):65–72. PubMed Europe PMC Scholia
- Cardiomyopathic and channelopathic causes of sudden unexplained death in infants and children. Tester DJ, Ackerman MJ. Annu Rev Med. 2009;60:69–84. PubMed Europe PMC Scholia
- Sudden infant death syndrome (SIDS) in African Americans: polymorphisms in the gene encoding the stress peptide pituitary adenylate cyclase-activating polypeptide (PACAP). Cummings KJ, Klotz C, Liu WQ, Weese-Mayer DE, Marazita ML, Cooper ME, et al. Acta Paediatr. 2009 Mar;98(3):482–9. PubMed Europe PMC Scholia
- The role of 5-HT3 and other excitatory receptors in central cardiorespiratory responses to hypoxia: implications for sudden infant death syndrome. Dergacheva O, Kamendi H, Wang X, Pinol RM, Frank J, Jameson H, et al. Pediatr Res. 2009 Jun;65(6):625–30. PubMed Europe PMC Scholia
- Positron emission tomography quantification of serotonin-1A receptor binding in medication-free bipolar depression. Sullivan GM, Ogden RT, Oquendo MA, Kumar JSD, Simpson N, Huang Y yu, et al. Biol Psychiatry. 2009 Aug 1;66(3):223–30. PubMed Europe PMC Scholia
- SNP association and sequence analysis of the NOS1AP gene in SIDS. Osawa M, Kimura R, Hasegawa I, Mukasa N, Satoh F. Leg Med (Tokyo). 2009 Apr;11 Suppl 1:S307-8. PubMed Europe PMC Scholia
- Sudden infant death syndrome and sudden intrauterine unexplained death: correlation between hypoplasia of raphé nuclei and serotonin transporter gene promoter polymorphism. Lavezzi AM, Casale V, Oneda R, Weese-Mayer DE, Matturri L. Pediatr Res. 2009 Jul;66(1):22–7. PubMed Europe PMC Scholia
- Severe spontaneous bradycardia associated with respiratory disruptions in rat pups with fewer brain stem 5-HT neurons. Cummings KJ, Commons KG, Fan KC, Li A, Nattie EE. Am J Physiol Regul Integr Comp Physiol. 2009 Jun;296(6):R1783-96. PubMed Europe PMC Scholia
- Interleukin-6 and the serotonergic system of the medulla oblongata in the sudden infant death syndrome. Rognum IJ, Haynes RL, Vege A, Yang M, Rognum TO, Kinney HC. Acta Neuropathol. 2009 Oct;118(4):519–30. PubMed Europe PMC Scholia
- Dynamic chromatin remodeling events in hippocampal neurons are associated with NMDA receptor-mediated activation of Bdnf gene promoter 1. Tian F, Hu XZ, Wu X, Jiang H, Pan H, Marini AM, et al. J Neurochem. 2009 Jun;109(5):1375–88. PubMed Europe PMC Scholia
- Estrogen receptor beta regulates the expression of tryptophan-hydroxylase 2 mRNA within serotonergic neurons of the rat dorsal raphe nuclei. Donner N, Handa RJ. Neuroscience. 2009 Oct 6;163(2):705–18. PubMed Europe PMC Scholia
- GPD1L links redox state to cardiac excitability by PKC-dependent phosphorylation of the sodium channel SCN5A. Valdivia CR, Ueda K, Ackerman MJ, Makielski JC. Am J Physiol Heart Circ Physiol. 2009 Oct;297(4):H1446-52. PubMed Europe PMC Scholia
- Prenatal nicotine-exposure alters fetal autonomic activity and medullary neurotransmitter receptors: implications for sudden infant death syndrome. Duncan JR, Garland M, Myers MM, Fifer WP, Yang M, Kinney HC, et al. J Appl Physiol (1985). 2009 Nov;107(5):1579–90. PubMed Europe PMC Scholia
- Impact of sodium/proton exchanger 3 gene variants on sudden infant death syndrome. Poetsch M, Nottebaum BJ, Wingenfeld L, Frede S, Vennemann M, Bajanowski T. J Pediatr. 2010 Jan;156(1):44-48.e1. PubMed Europe PMC Scholia
- Mixed lineage kinase phosphorylates transcription factor E47 and inhibits TrkB expression to link neuronal death and survival pathways. Pedraza N, Rafel M, Navarro I, Encinas M, Aldea M, Gallego C. J Biol Chem. 2009 Nov 20;284(47):32980–8. PubMed Europe PMC Scholia
- Prostaglandin promotion of osteocyte gap junction function through transcriptional regulation of connexin 43 by glycogen synthase kinase 3/beta-catenin signaling. Xia X, Batra N, Shi Q, Bonewald LF, Sprague E, Jiang JX. Mol Cell Biol. 2010 Jan;30(1):206–19. PubMed Europe PMC Scholia
- Oncogenic BRAFV600E induces expression of neuronal differentiation marker MAP2 in melanoma cells by promoter demethylation and down-regulation of transcription repressor HES1. Maddodi N, Bhat KMR, Devi S, Zhang SC, Setaluri V. J Biol Chem. 2010 Jan 1;285(1):242–54. PubMed Europe PMC Scholia
- Cytokine gene polymorphisms and sudden infant death syndrome. Ferrante L, Opdal SH, Vege A, Rognum T. Acta Paediatr. 2010 Mar;99(3):384–8. PubMed Europe PMC Scholia
- Alpha1-syntrophin mutations identified in sudden infant death syndrome cause an increase in late cardiac sodium current. Cheng J, Van Norstrand DW, Medeiros-Domingo A, Valdivia C, Tan B hua, Ye B, et al. Circ Arrhythm Electrophysiol. 2009 Dec;2(6):667–76. PubMed Europe PMC Scholia
- IL-1 gene cluster polymorphisms and sudden infant death syndrome. Ferrante L, Opdal SH, Vege A, Rognum TO. Hum Immunol. 2010 Apr;71(4):402–6. PubMed Europe PMC Scholia
- Brainstem serotonergic deficiency in sudden infant death syndrome. Duncan JR, Paterson DS, Hoffman JM, Mokler DJ, Borenstein NS, Belliveau RA, et al. JAMA. 2010 Feb 3;303(5):430–7. PubMed Europe PMC Scholia
- A common FMO3 polymorphism may amplify the effect of nicotine exposure in sudden infant death syndrome (SIDS). Poetsch M, Czerwinski M, Wingenfeld L, Vennemann M, Bajanowski T. Int J Legal Med. 2010 Jul;124(4):301–6. PubMed Europe PMC Scholia
- Cardiac muscarinic receptor overexpression in sudden infant death syndrome. Livolsi A, Niederhoffer N, Dali-Youcef N, Rambaud C, Olexa C, Mokni W, et al. PLoS One. 2010 Mar 1;5(3):e9464. PubMed Europe PMC Scholia
- Sudden infant death syndrome-associated mutations in the sodium channel beta subunits. Tan BH, Pundi KN, Van Norstrand DW, Valdivia CR, Tester DJ, Medeiros-Domingo A, et al. Heart Rhythm. 2010 Jun;7(6):771–8. PubMed Europe PMC Scholia
- Aquaporin-4 gene variation and sudden infant death syndrome. Opdal SH, Vege A, Stray-Pedersen A, Rognum TO. Pediatr Res. 2010 Jul;68(1):48–51. PubMed Europe PMC Scholia
- miR-16 targets the serotonin transporter: a new facet for adaptive responses to antidepressants. Baudry A, Mouillet-Richard S, Schneider B, Launay JM, Kellermann O. Science. 2010 Sep 17;329(5998):1537–41. PubMed Europe PMC Scholia
- Variant interleukin 1 receptor antagonist gene alleles in sudden infant death syndrome. Highet AR, Gibson CS, Goldwater PN. Arch Dis Child. 2010 Dec;95(12):1009–12. PubMed Europe PMC Scholia
- Evidence for an association between infant mortality and a carnitine palmitoyltransferase 1A genetic variant. Gessner BD, Gillingham MB, Birch S, Wood T, Koeller DM. Pediatrics. 2010 Nov;126(5):945–51. PubMed Europe PMC Scholia
- Activation of tyrosine hydroxylase (TH) gene transcription induced by brain-derived neurotrophic factor (BDNF) and its selective inhibition through Ca(2+) signals evoked via the N-methyl-D-aspartate (NMDA) receptor. Fukuchi M, Fujii H, Takachi H, Ichinose H, Kuwana Y, Tabuchi A, et al. Brain Res. 2010 Dec 17;1366:18–26. PubMed Europe PMC Scholia
- Transcriptional Regulation of NMDA Receptor Expression. Bai G, Hoffman PW. In: Van Dongen AM, editor. Biology of the NMDA Receptor. Boca Raton (FL): CRC Press/Taylor & Francis; PubMed Europe PMC Scholia
- A hypoxia-induced positive feedback loop promotes hypoxia-inducible factor 1alpha stability through miR-210 suppression of glycerol-3-phosphate dehydrogenase 1-like. Kelly TJ, Souza AL, Clish CB, Puigserver P. Mol Cell Biol. 2011 Jul;31(13):2696–706. PubMed Europe PMC Scholia
- Transcriptional regulation of the Na⁺/H⁺ exchanger NHE3 by chronic exposure to angiotensin II in renal epithelial cells. Queiroz-Leite GD, Peruzzetto MC, Neri EA, Rebouças NA. Biochem Biophys Res Commun. 2011 Jun 10;409(3):470–6. PubMed Europe PMC Scholia
- Loss-of-function mutations in the KCNJ8-encoded Kir6.1 K(ATP) channel and sudden infant death syndrome. Tester DJ, Tan BH, Medeiros-Domingo A, Song C, Makielski JC, Ackerman MJ. Circ Cardiovasc Genet. 2011 Oct;4(5):510–5. PubMed Europe PMC Scholia
- Decreased GABAA receptor binding in the medullary serotonergic system in the sudden infant death syndrome. Broadbelt KG, Paterson DS, Belliveau RA, Trachtenberg FL, Haas EA, Stanley C, et al. J Neuropathol Exp Neurol. 2011 Sep;70(9):799–810. PubMed Europe PMC Scholia
- Brainstem deficiency of the 14-3-3 regulator of serotonin synthesis: a proteomics analysis in the sudden infant death syndrome. Broadbelt KG, Rivera KD, Paterson DS, Duncan JR, Trachtenberg FL, Paulo JA, et al. Mol Cell Proteomics. 2012 Jan;11(1):M111.009530. PubMed Europe PMC Scholia
- Effects of cigarette smoke exposure on nicotinic acetylcholine receptor subunits α7 and β2 in the sudden infant death syndrome (SIDS) brainstem. Machaalani R, Say M, Waters KA. Toxicol Appl Pharmacol. 2011 Dec 15;257(3):396–404. PubMed Europe PMC Scholia
- Connexin43 mutation causes heterogeneous gap junction loss and sudden infant death. Van Norstrand DW, Asimaki A, Rubinos C, Dolmatova E, Srinivas M, Tester DJ, et al. Circulation. 2012 Jan 24;125(3):474–81. PubMed Europe PMC Scholia
- Histone deacetylase 9 as a negative regulator for choline acetyltransferase gene in NG108-15 neuronal cells. Aizawa S, Teramoto K, Yamamuro Y. Neuroscience. 2012 Mar 15;205:63–72. PubMed Europe PMC Scholia
- MicroRNA-130a represses transcriptional activity of aquaporin 4 M1 promoter. Sepramaniam S, Ying LK, Armugam A, Wintour EM, Jeyaseelan K. J Biol Chem. 2012 Apr 6;287(15):12006–15. PubMed Europe PMC Scholia
- Association between a functional polymorphism in the MAOA gene and sudden infant death syndrome. Klintschar M, Heimbold C. Pediatrics. 2012 Mar;129(3):e756-61. PubMed Europe PMC Scholia
- Repressor element-1 silencing transcription factor (REST)-dependent epigenetic remodeling is critical to ischemia-induced neuronal death. Noh KM, Hwang JY, Follenzi A, Athanasiadou R, Miyawaki T, Greally JM, et al. Proc Natl Acad Sci U S A. 2012 Apr 17;109(16):E962-71. PubMed Europe PMC Scholia