Membrane trafficking (WP3212)

Bos taurus

The secretory membrane system allows a cell to regulate delivery of newly synthesized proteins, carbohydrates, and lipids to the cell surface, a necessity for growth and homeostasis. The system is made up of distinct organelles, including the endoplasmic reticulum (ER), Golgi complex, plasma membrane, and tubulovesicular transport intermediates. These organelles mediate intracellular membrane transport between themselves and the cell surface. Membrane traffic within this system flows along highly organized directional routes. Secretory cargo is synthesized and assembled in the ER and then transported to the Golgi complex for further processing and maturation. Upon arrival at the trans Golgi network (TGN), the cargo is sorted and packaged into post-Golgi carriers that move through the cytoplasm to fuse with the cell surface. This directional membrane flow is balanced by retrieval pathways that bring membrane and selected proteins back to the compartment of origin.Original Pathway at Reactome: http://www.reactome.org/PathwayBrowser/#DB=gk_current&FOCUS_SPECIES_ID=48887&FOCUS_PATHWAY_ID=199991

Authors

Martina Summer-Kutmon , Elisa Cirillo , and Eric Weitz

Activity

last edited

Discuss this pathway

Check for ongoing discussions or start your own.

Cited In

Are you planning to include this pathway in your next publication? See How to Cite and add a link here to your paper once it's online.

Organisms

Bos taurus

Communities

Annotations

Pathway Ontology

regulatory pathway

Participants

Label Type Compact URI Comment
GTP Metabolite chebi:15996
GDP [cytosol] Metabolite chebi:17552
GDP Metabolite chebi:17552
GTP [cytosol] Metabolite chebi:15996
Pi Metabolite chebi:18367
ATP Metabolite chebi:15422
ADP Metabolite chebi:16761
PI(3,4,5)P3[endosome membrane] Metabolite chebi:16618
PI(3,4,5)P3[endocytic vesiclemembrane] Metabolite chebi:16618
SAR1B Protein ensembl:ENSBTAG00000021226 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:Q9Y6B6
PREB Protein ensembl:ENSBTAG00000007080 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:Q9HCU5
SEC24A Protein ensembl:ENSBTAG00000018322 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:O95486
SEC24B Protein ensembl:ENSBTAG00000010945 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:O95487
SEC24C Protein ensembl:ENSBTAG00000002791 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:P53992
SEC24D Protein ensembl:ENSBTAG00000003619 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:O94855
SEC23A Protein ensembl:ENSBTAG00000003708 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:Q15436
SEC13 Protein ensembl:ENSBTAG00000017825 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:P55735
SEC31A Protein ensembl:ENSBTAG00000020525 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:O94979
ARF1 Protein ensembl:ENSBTAG00000007725 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:P84077
GBF1 Protein ensembl:ENSBTAG00000006014 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:Q92538
COPA Protein ensembl:ENSBTAG00000004333 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:P53621
COPB1 Protein ensembl:ENSBTAG00000006556 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:P53618
COPB2 Protein ensembl:ENSBTAG00000014843 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:P35606
ARCN1 Protein ensembl:ENSBTAG00000006690 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:P48444
COPE Protein ensembl:ENSBTAG00000000810 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:O14579
COPG1 Protein ensembl:ENSBTAG00000013212 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:Q9Y678
COPZ1 Protein ensembl:ENSBTAG00000005384 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:P61923
ARFGAP3 Protein ensembl:ENSBTAG00000004916 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:Q8N6T3
SH3GL2 Protein ensembl:ENSBTAG00000014103 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:Q99962
AP1G1 Protein ensembl:ENSBTAG00000002769 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:O43747
AP1M1 Protein ensembl:ENSBTAG00000013329 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:Q9BXS5
AP1M2 Protein ensembl:ENSBTAG00000021160 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:Q9Y6Q5
AP1S1 Protein ensembl:ENSBTAG00000014468 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:P61966
AP1S2 Protein ensembl:ENSBTAG00000020420 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:P56377
AP1S3 Protein ensembl:ENSBTAG00000011133 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:Q96PC3
AP1B1 Protein ensembl:ENSBTAG00000001189 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:Q10567
ARRB1 Protein ensembl:ENSBTAG00000020485 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:P49407
DNM2 Protein ensembl:ENSBTAG00000013362 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:P50570
HSPA8 Protein ensembl:ENSBTAG00000013162 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:P11142
DNAJC6 Protein ensembl:ENSBTAG00000030749 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:O75061
SNAP23 Protein ensembl:ENSBTAG00000005661 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:O00161
STX4 Protein ensembl:ENSBTAG00000007523 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:Q12846
VAMP2 Protein ensembl:ENSBTAG00000003891 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:P63027
VAMP8 Protein ensembl:ENSBTAG00000023997 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:Q9BV40
VPS28 Protein ensembl:ENSBTAG00000026320 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:Q9UK41
VPS37A Protein ensembl:ENSBTAG00000010355 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:Q8NEZ2
VPS37C Protein ensembl:ENSBTAG00000008064 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:A5D8V6
VPS37D Protein ensembl:ENSBTAG00000008487 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:Q86XT2
TSG101 Protein ensembl:ENSBTAG00000013563 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:Q99816
STAM Protein ensembl:ENSBTAG00000002658 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:Q92783
STAM2 Protein ensembl:ENSBTAG00000001887 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:O75886
HGS Protein ensembl:ENSBTAG00000000411 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:O14964
RPS27A Protein ensembl:ENSBTAG00000015473 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:P62979
UBA52 Protein ensembl:ENSBTAG00000007737 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:P62987
UBB Protein ensembl:ENSBTAG00000017246 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:P0CG47
SNF8 Protein ensembl:ENSBTAG00000018803 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:Q96H20
VPS25 Protein ensembl:ENSBTAG00000019906 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:Q9BRG1
VPS36 Protein ensembl:ENSBTAG00000004307 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:Q86VN1
CHMP2A Protein ensembl:ENSBTAG00000013882 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:O43633
CHMP2B Protein ensembl:ENSBTAG00000007939 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:Q9UQN3
CHMP3 Protein ensembl:ENSBTAG00000013589 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:Q9Y3E7
CHMP4A Protein ensembl:ENSBTAG00000039415 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:Q9BY43
CHMP4B Protein ensembl:ENSBTAG00000013387 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:Q9H444
CHMP4C Protein ensembl:ENSBTAG00000004792 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:Q96CF2
CHMP6 Protein ensembl:ENSBTAG00000038745 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:Q96FZ7
CHMP7 Protein ensembl:ENSBTAG00000013528 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:Q8WUX9
VPS4A Protein ensembl:ENSBTAG00000001659 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:Q9UN37
VPS4B Protein ensembl:ENSBTAG00000010492 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:O75351
CHMP5 Protein ensembl:ENSBTAG00000012383 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:Q9NZZ3
VTA1 Protein ensembl:ENSBTAG00000005851 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:Q9NP79
TXNDC5 Protein ensembl:ENSBTAG00000019237 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:Q8NBS9
NAPA Protein ensembl:ENSBTAG00000013084 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:P54920
BLOC1S6 Protein ensembl:ENSBTAG00000012250 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:Q9UL45
CNO Protein ensembl:ENSBTAG00000003766 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:Q9NUP1
BLOC1S3 Protein ensembl:ENSBTAG00000007070 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:Q6QNY0
DTNBP1 Protein ensembl:ENSBTAG00000012939 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:Q96EV8
SH3D19 Protein ensembl:ENSBTAG00000016813 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:Q5HYK7
CLINT1 Protein ensembl:ENSBTAG00000016199 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:Q14677
FTL [cytosol] Protein ensembl:ENSBTAG00000019709 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:P02792
PUM1 Protein ensembl:ENSBTAG00000018979 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:Q14671

References

  1. Alteration of clathrin light chain expression by transfection and gene disruption. Acton SL, Wong DH, Parham P, Brodsky FM, Jackson AP. Mol Biol Cell. 1993 Jun;4(6):647–60. PubMed Europe PMC Scholia
  2. Role of auxilin in uncoating clathrin-coated vesicles. Ungewickell E, Ungewickell H, Holstein SE, Lindner R, Prasad K, Barouch W, et al. Nature. 1995 Dec 7;378(6557):632–5. PubMed Europe PMC Scholia
  3. The ARF1 GTPase-activating protein: zinc finger motif and Golgi complex localization. Cukierman E, Huber I, Rotman M, Cassel D. Science. 1995 Dec 22;270(5244):1999–2002. PubMed Europe PMC Scholia
  4. Coat proteins and vesicle budding. Schekman R, Orci L. Science. 1996 Mar 15;271(5255):1526–33. PubMed Europe PMC Scholia
  5. Dynamin II binds to the trans-Golgi network. Maier O, Knoblich M, Westermann P. Biochem Biophys Res Commun. 1996 Jun 14;223(2):229–33. PubMed Europe PMC Scholia
  6. Cytosolic and membrane-associated proteins involved in the recruitment of AP-1 adaptors onto the trans-Golgi network. Seaman MN, Sowerby PJ, Robinson MS. J Biol Chem. 1996 Oct 11;271(41):25446–51. PubMed Europe PMC Scholia
  7. ADP-ribosylation factor 1 transiently activates high-affinity adaptor protein complex AP-1 binding sites on Golgi membranes. Zhu Y, Traub LM, Kornfeld S. Mol Biol Cell. 1998 Jun;9(6):1323–37. PubMed Europe PMC Scholia
  8. Diverse functions of vertebrate gap junctions. Simon AM, Goodenough DA. Trends Cell Biol. 1998 Dec;8(12):477–83. PubMed Europe PMC Scholia
  9. Functional organization of clathrin in coats: combining electron cryomicroscopy and X-ray crystallography. Musacchio A, Smith CJ, Roseman AM, Harrison SC, Kirchhausen T, Pearse BM. Mol Cell. 1999 Jun;3(6):761–70. PubMed Europe PMC Scholia
  10. GBF1: A novel Golgi-associated BFA-resistant guanine nucleotide exchange factor that displays specificity for ADP-ribosylation factor 5. Claude A, Zhao BP, Kuziemsky CE, Dahan S, Berger SJ, Yan JP, et al. J Cell Biol. 1999 Jul 12;146(1):71–84. PubMed Europe PMC Scholia
  11. COPI-coated ER-to-Golgi transport complexes segregate from COPII in close proximity to ER exit sites. Stephens DJ, Lin-Marq N, Pagano A, Pepperkok R, Paccaud JP. J Cell Sci. 2000 Jun;113 ( Pt 12):2177–85. PubMed Europe PMC Scholia
  12. Dynamics of transitional endoplasmic reticulum sites in vertebrate cells. Hammond AT, Glick BS. Mol Biol Cell. 2000 Sep;11(9):3013–30. PubMed Europe PMC Scholia
  13. Secretory protein trafficking and organelle dynamics in living cells. Lippincott-Schwartz J, Roberts TH, Hirschberg K. Annu Rev Cell Dev Biol. 2000;16:557–89. PubMed Europe PMC Scholia
  14. A SNARE complex mediating fusion of late endosomes defines conserved properties of SNARE structure and function. Antonin W, Holroyd C, Fasshauer D, Pabst S, Von Mollard GF, Jahn R. EMBO J. 2000 Dec 1;19(23):6453–64. PubMed Europe PMC Scholia
  15. Human diseases: clues to cracking the connexin code? Kelsell DP, Dunlop J, Hodgins MB. Trends Cell Biol. 2001 Jan;11(1):2–6. PubMed Europe PMC Scholia
  16. Mammalian cells express two VPS4 proteins both of which are involved in intracellular protein trafficking. Scheuring S, Röhricht RA, Schöning-Burkhardt B, Beyer A, Müller S, Abts HF, et al. J Mol Biol. 2001 Sep 21;312(3):469–80. PubMed Europe PMC Scholia
  17. Generation of high curvature membranes mediated by direct endophilin bilayer interactions. Farsad K, Ringstad N, Takei K, Floyd SR, Rose K, De Camilli P. J Cell Biol. 2001 Oct 15;155(2):193–200. PubMed Europe PMC Scholia
  18. GGAs: roles of the different domains and comparison with AP-1 and clathrin. Hirst J, Lindsay MR, Robinson MS. Mol Biol Cell. 2001 Nov;12(11):3573–88. PubMed Europe PMC Scholia
  19. Learning the language of cell-cell communication through connexin channels. Bruzzone R. Genome Biol. 2001;2(11):REPORTS4027. PubMed Europe PMC Scholia
  20. Regulated transport of the glucose transporter GLUT4. Bryant NJ, Govers R, James DE. Nat Rev Mol Cell Biol. 2002 Apr;3(4):267–77. PubMed Europe PMC Scholia
  21. ARFGAP1 promotes the formation of COPI vesicles, suggesting function as a component of the coat. Yang JS, Lee SY, Gao M, Bourgoin S, Randazzo PA, Premont RT, et al. J Cell Biol. 2002 Oct 14;159(1):69–78. PubMed Europe PMC Scholia
  22. Hrs function: viruses provide the clue. Clague MJ, Urbé S. Trends Cell Biol. 2003 Dec;13(12):603–6. PubMed Europe PMC Scholia
  23. Lipid packing sensed by ArfGAP1 couples COPI coat disassembly to membrane bilayer curvature. Bigay J, Gounon P, Robineau S, Antonny B. Nature. 2003 Dec 4;426(6966):563–6. PubMed Europe PMC Scholia
  24. Identification of SNAREs involved in synaptotagmin VII-regulated lysosomal exocytosis. Rao SK, Huynh C, Proux-Gillardeaux V, Galli T, Andrews NW. J Biol Chem. 2004 May 7;279(19):20471–9. PubMed Europe PMC Scholia
  25. Regulation of connexin biosynthesis, assembly, gap junction formation, and removal. Segretain D, Falk MM. Biochim Biophys Acta. 2004 Mar 23;1662(1–2):3–21. PubMed Europe PMC Scholia
  26. ATPase-deficient hVPS4 impairs formation of internal endosomal vesicles and stabilizes bilayered clathrin coats on endosomal vacuoles. Sachse M, Strous GJ, Klumperman J. J Cell Sci. 2004 Apr 1;117(Pt 9):1699–708. PubMed Europe PMC Scholia
  27. Identification of snapin and three novel proteins (BLOS1, BLOS2, and BLOS3/reduced pigmentation) as subunits of biogenesis of lysosome-related organelles complex-1 (BLOC-1). Starcevic M, Dell’Angelica EC. J Biol Chem. 2004 Jul 2;279(27):28393–401. PubMed Europe PMC Scholia
  28. The human endosomal sorting complex required for transport (ESCRT-I) and its role in HIV-1 budding. Stuchell MD, Garrus JE, Müller B, Stray KM, Ghaffarian S, McKinnon R, et al. J Biol Chem. 2004 Aug 20;279(34):36059–71. PubMed Europe PMC Scholia
  29. ArfGAP1 dynamics and its role in COPI coat assembly on Golgi membranes of living cells. Liu W, Duden R, Phair RD, Lippincott-Schwartz J. J Cell Biol. 2005 Mar 28;168(7):1053–63. PubMed Europe PMC Scholia
  30. Depletion of GAK/auxilin 2 inhibits receptor-mediated endocytosis and recruitment of both clathrin and clathrin adaptors. Lee D won, Zhao X, Zhang F, Eisenberg E, Greene LE. J Cell Sci. 2005 Sep 15;118(Pt 18):4311–21. PubMed Europe PMC Scholia
  31. Degradation of endocytosed epidermal growth factor and virally ubiquitinated major histocompatibility complex class I is independent of mammalian ESCRTII. Bowers K, Piper SC, Edeling MA, Gray SR, Owen DJ, Lehner PJ, et al. J Biol Chem. 2006 Feb 24;281(8):5094–105. PubMed Europe PMC Scholia
  32. Insights into COPI coat assembly and function in living cells. Lippincott-Schwartz J, Liu W. Trends Cell Biol. 2006 Oct;16(10):e1-4. PubMed Europe PMC Scholia
  33. Human ESCRT-II complex and its role in human immunodeficiency virus type 1 release. Langelier C, von Schwedler UK, Fisher RD, De Domenico I, White PL, Hill CP, et al. J Virol. 2006 Oct;80(19):9465–80. PubMed Europe PMC Scholia
  34. Comparative proteomics of clathrin-coated vesicles. Borner GHH, Harbour M, Hester S, Lilley KS, Robinson MS. J Cell Biol. 2006 Nov 20;175(4):571–8. PubMed Europe PMC Scholia
  35. Mechanisms of COPII vesicle formation and protein sorting. Sato K, Nakano A. FEBS Lett. 2007 May 22;581(11):2076–82. PubMed Europe PMC Scholia
  36. Insulin action on glucose transporters through molecular switches, tracks and tethers. Zaid H, Antonescu CN, Randhawa VK, Klip A. Biochem J. 2008 Jul 15;413(2):201–15. PubMed Europe PMC Scholia
  37. The molecular basis of insulin-stimulated glucose uptake: signalling, trafficking and potential drug targets. Leney SE, Tavaré JM. J Endocrinol. 2009 Oct;203(1):1–18. PubMed Europe PMC Scholia
  38. Biogenesis and regulation of insulin-responsive vesicles containing GLUT4. Bogan JS, Kandror KV. Curr Opin Cell Biol. 2010 Aug;22(4):506–12. PubMed Europe PMC Scholia
  39. Signaling, cytoskeletal and membrane mechanisms regulating GLUT4 exocytosis. Hoffman NJ, Elmendorf JS. Trends Endocrinol Metab. 2011 Mar;22(3):110–6. PubMed Europe PMC Scholia
  40. The sugar is sIRVed: sorting Glut4 and its fellow travelers. Kandror KV, Pilch PF. Traffic. 2011 Jun;12(6):665–71. PubMed Europe PMC Scholia
  41. Endocytosis, recycling, and regulated exocytosis of glucose transporter 4. Foley K, Boguslavsky S, Klip A. Biochemistry. 2011 Apr 19;50(15):3048–61. PubMed Europe PMC Scholia